1,172 research outputs found

    Study on coupling effect between the time-varying gear backlash and the different time-varying mesh parameters on the gear system

    Get PDF
    The vibration excitation of the rolling mill mainly comes from the gearbox in the process of rolling strip, and the meshing excitation is the main excitation factor of the gearbox. And the gear backlash plays an important role in the meshing excitation. However, the backlash is inevitable in the process of designing the gear system. Therefore, it is important to select the appropriate gear backlash to reduce the vibration amplitude of the gearbox, to improve the rolling speed and the quality of the steel strip. So, in this paper, the effect of the different variation amplitudes for the time-varying gear backlash (TVGB) on the vibration characteristics of the gear system under various mesh parameters is studied. A new formulation for calculating nonlinear damping and time varying meshing stiffness is applied in this coupling model. The results show that increasing of the load torque, the damping ratio, the system parameter or decreasing the directional rotation radius variation or kinematic transmission error caused the effects of variation amplitudes for the (TVGB) on the dynamic characteristics of the gear system to decrease. Test data from a gearbox experimental table verifies the accuracy of the model. The model is shown to be capable of simulating the mutually coupled effect between the backlash and the different parameters on the gear system. So, the new coupled model can be used as guide to select the appropriate gear backlash values for the rolling mill under different operating conditions

    Nano-Ag on vanadium dioxide. II. Thermal tuning of surface plasmon resonance

    Get PDF
    Thermal tuning of the localized surface plasmon resonance (LSPR) of Ag nanoparticles on a thermochromic thin film of VO2 was studied experimentally. The tuning is strongly temperature dependent and thermally reversible. The LSPR wavelength lambda(SPR) shifts to the blue with increasing temperature from 30 to 80 degrees C, and shifts back to the red as temperature decreases. A smart tuning is achievable on condition that the temperature is controlled in a stepwise manner. The tunable wavelength range depends on the particle size or the mass thickness of the metal nanoparticle film. Further, the tunability was found to be enhanced significantly when a layer of TiO2 was introduced to overcoat the Ag nanoparticles, yielding a marked sensitivity factor Delta lambda(SPR)/Delta n, of as large as 480 nm per refractive index unit (n) at the semiconductor phase of VO2. (c) 2008 American Institute Of Physics

    Nodal Promotes Glioblastoma Cell Growth

    Get PDF
    Nodal is a member of the transforming growth factor-β (TGF-β) superfamily that plays critical roles during embryogenesis. Recent studies in ovarian, breast, prostate, and skin cancer cells suggest that Nodal also regulates cell proliferation, apoptosis, and invasion in cancer cells. However, it appears to exert both tumor-suppressing and tumor-promoting effects, depending on the cell type. To further understand the role of Nodal in tumorigenesis, we examined the effect of Nodal in glioblastoma cell growth and spheroid formation using U87 cell line. Treatment of U87 with recombinant Nodal significantly increased U87 cell growth. In U87 cells stably transfected with the plasmid encoding Nodal, Smad2 phosphorylation was strongly induced and cell growth was significantly enhanced. Overexpression of Nodal also resulted in tight spheroid formation. On the other hand, the cells stably transfected with Nodal siRNA formed loose spheroids. Nodal is known to signal through activin receptor-like kinase 4 (ALK4) and ALK7 and the Smad2/3 pathway. To determine which receptor and Smad mediate the growth promoting effect of Nodal, we transfected siRNAs targeting ALK4, ALK7, Smad2, or Smad3 into Nodal-overexpressing cells and observed that cell growth was significantly inhibited by ALK4, ALK7, and Smad3 siRNAs. Taken together, these findings suggest that Nodal may have tumor-promoting effects on glioblastoma cells and these effects are mediated by ALK4, ALK7, and Smad3

    High-aspect-ratio dielectric pillar with nanocavity backed by metal substrate in the infrared range

    Get PDF
    We investigated absorption and field enhancements of shallow nanocavities on top of high-aspect-ratio dielectric pillars in the infrared range. The structure includes a high-aspect-ratio nanopillar array of high refractive index, with nano-cavities on top of the pillars, and a metal plane at the bottom. The enhancement factor of electric field intensity reaches 3180 in the nanocavities and peak absorption reaches 99% . We also investigated the finite-size effect of the presented structure to simulate real experiments. Due to its narrow absorption bandwidth 3.5 nm, it can work as a refractive index sensor with sensitivity 297.5 nm/RIU and figure of merit 85. This paves the way to directly control light field at the nanoscales in the infrared light range. The investigated nanostructure will find applications in multifunctional photonics devices such as chips for culturing cells, refractive index sensors, biosensors of single molecule detection and nonlinear sensors

    Hypoxia Exacerbates Inflammatory Acute Lung Injury via the Toll-Like Receptor 4 Signaling Pathway

    Get PDF
    Acute lung injury (ALI) is characterized by non-cardiogenic diffuse alveolar damage and often leads to a lethal consequence, particularly when hypoxia coexists. The treatment of ALI remains a challenge: pulmonary inflammation and hypoxia both contribute to its onset and progression and no effective prevention approach is available. Here, we aimed to investigate the underlying mechanism of hypoxia interaction with inflammation in ALI and to evaluate hypoxia-inducible factor 1 alpha (HIF-1α)—the crucial modulator in hypoxia—as a potential therapeutic target against ALI. First, we developed a novel ALI rat model induced by a combined low-dose of lipopolysaccharides (LPS) with acute hypoxia. Second, we used gene microarray analysis to evaluate the inflammatory profiles of bronchi alveolar lavage fluid cells of ALI rats. Third, we employed an alveolar macrophage cell line, NR8383 as an in vitro system together with a toll-like receptor 4 (TLR4) antagonist TAK-242, to verify our in vivo findings from ALI animals. Finally, we tested the therapeutic effects of HIF-1α augmentation against inflammation and hypoxia in ALI. We demonstrated that (i) LPS upregulated inflammatory genes, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), in the alveolar macrophages of ALI rats, which were further enhanced when ALI combined with hypoxia; (ii) hypoxia exposure could further enhance the upregulation of alveolar macrophageal TLR4 that was noticed in LPS-induced inflammatory ALI, conversely, TLR4 antagonist TAK-242 could suppress the macrophageal expression of TLR4 and inflammatory cytokines, including TNF-α, IL-1β, and IL-6, suggesting that the TLR4 signaling pathway as a central link between inflammation and hypoxia in ALI; (iii) manipulation of HIF-1α in vitro could suppress TLR4 expression induced by combined LPS and hypoxia, via suppressing promoter activity of the TLR4 gene; (iv) preconditioning augmentation of HIF-1α in vivo by HIF hydroxylase inhibitor, DMOG excreted protection against inflammatory, and hypoxic processes in ALI. Together, we see that hypoxia can exacerbate inflammation in ALI via the activation of the TLR4 signaling pathway in alveolar macrophages and predispose impairment of the alveolar-capillary barrier in the development of ALI. Targeting HIF-1α can suppress TLR4 expression and macrophageal inflammation, suggesting the potential therapeutic and preventative value of HIF-1α/TLR4 crosstalk pathway in ALI

    Global Stability of a Variation Epidemic Spreading Model on Complex Networks

    Get PDF
    Epidemic spreading on networks becomes a hot issue of nonlinear systems, which has attracted many researchers’ attention in recent years. A novel epidemic spreading model with variant factors in complex networks is proposed and investigated in this paper. One main feature of this model is that virus variation is investigated in the process of epidemic dynamical spreading. The global dynamics of this model involving an endemic equilibrium and a disease-free equilibrium are, respectively, discussed. Some sufficient conditions are given for the existence of the endemic equilibrium. In addition, the global asymptotic stability problems of the disease-free equilibrium and the endemic equilibrium are also investigated by the Routh-Hurwitz stability criterion and Lyapunov stability criterion. And the uniform persistence condition of the new system is studied. Finally, numerical simulations are provided to illustrate obtained theoretical results

     Primula surculosa (Primulaceae), a new species from Yunnan, China

    Get PDF
    A new species, Primula surculosa, is described and illustrated. In gross morphology, it is clearly allied to section Petiolares and is most similar to P. taliensis from the group Taliensis, but is distinctive in its indumentum in the throat of the corolla tube, and the markedly stoloniferous habit

    Octa­aqua­bis(μ2-1H-pyrazole-3,5-di­carboxyl­ato)tricopper(II) tetra­hydrate

    Get PDF
    In the trinucler CuII complex mol­ecule of the title compound, [Cu3(C5HN2O4)2(H2O)8]·4H2O, the central CuII atom is located on an inversion centre and is coordinated in a distorted octa­hedral geometry. The equatorial sites are occupied by two N and two O atoms from two pyrazole-3,5-dicarboxyl­ate ligands and the axial positions are occupied by two water mol­ecules. The two other symmetry-related CuII atoms are penta­coordinated and assume a square-pyramidal geometry. In the crystal structure, coordinated and uncoordinated water mol­ecules and carboxyl­ate O atoms are linked by O—H⋯O hydrogen bonds
    corecore