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Epidemic spreading on networks becomes a hot issue of nonlinear systems, which has attracted many researchers’ attention in
recent years. A novel epidemic spreading model with variant factors in complex networks is proposed and investigated in this
paper. One main feature of this model is that virus variation is investigated in the process of epidemic dynamical spreading. The
global dynamics of this model involving an endemic equilibrium and a disease-free equilibrium are, respectively, discussed. Some
sufficient conditions are given for the existence of the endemic equilibrium. In addition, the global asymptotic stability problems
of the disease-free equilibrium and the endemic equilibrium are also investigated by the Routh-Hurwitz stability criterion and
Lyapunov stability criterion. And the uniform persistence condition of the new system is studied. Finally, numerical simulations
are provided to illustrate obtained theoretical results.

1. Introduction

The research of infectious disease has always been a hot
issue of nonlinear systems with applications. The popular
dynamics on complex network is the epidemic spreading,
which describes how infections spread throughout a network
[1]. In recent years, much research work has been done about
the viral dynamics of epidemic spreading [2, 3]. These results
are helpful for preventing and controlling most emerging
infectious diseases like SARS, HIV/AIDS, H5N1, and H1N1.
They are also meaningful to provide important information
for the research in the field of rumor spreading [4–7],
traffic dynamics [8–10], computer viruses [11, 12], biology
mechanism [13], and medicine developing [14–16].

In real world, the population size is large enough such
that the mixing of individuals can be considered to be
homogeneous. Social and biological systems can be properly
described as complex networks with nodes representing indi-
viduals and links mimicking the interactions [17, 18]. Suitable
mathematical models of the infectious disease spreading in
complex homogeneous networks are of great practical value
to analyze the detailed spreading process. Because epidemic
spreading usually brings great harm to society, it is very

urgent to establish accurate propagation models considering
the infection contagion spreading problems. In past decades,
complicated 𝑆𝐼𝑅 models were formulated from different
perspectives of epidemiology [19, 20]. In these models, 𝑆,
𝐼, and 𝑅 denote, respectively, the number of individuals
susceptible to the disease, the number of infectious indi-
viduals, and the number of individuals who are recovered
from being infectious.The process of epidemic spreading can
be further modeled with differential equations, such as 𝑆𝐼𝑆,
𝑆𝐼𝑅, and 𝑆𝐼𝑅𝑆 model [21–26]. In these research works the
network topological structure is simplified presumptively to
regular network or sufficient mixing homogeneous network,
where the relationship between the network structure and
the epidemic spreading is discussed. Kephart et al. [27]
established a virus spreadingmodel based on a homogeneous
network by characterizing the average degree as the network
metrics and obtained a virus spreading threshold 𝜏

𝑐
= 1/⟨𝑘⟩,

while Pastor-Satorras [28–31] studied the epidemic outbreaks
in complex heterogeneous network, which chose the degree
and average degree as the network metrics and obtained the
epidemic spreading threshold 𝜏

𝑐
= ⟨𝑘⟩/⟨𝑘

2

⟩. Moore and
Newman [32] applied the percolation theory to analyze the
epidemic spreading behaviors in small-world network and
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showed the differences of spreading action between small-
world network and regular network. These research results
illustrate that the different network topological structure can
affect the epidemic spreading.

Apart from the network topological structure, one of the
most important characteristics of epidemic spreadingmodels
is the dynamical stability which can reflect the development
of the spreading behaviors of infectious disease. Hence, the
stability problems of these epidemic models need to be
investigated. Kuniya [21] applied a discretization method
to prove the global asymptotic stability of the 𝑆𝐼𝑅 model
with the age structure. Zhang and Feng [22] deal with the
global analysis of a dynamical model describing the spread
of tuberculosis with isolation and incomplete treatment.
Lahrouz et al. [23] studied a nonlinear 𝑆𝐼𝑅𝑆 model with
saturated birth and death rates, and the global asymptotic
stability of the model is also discussed. Xu et al. [24] analyzed
a time-delayed 𝑆𝐼𝑅𝑆 model with temporary immunity, and
some conditions for the globally asymptotically stability of
the disease-free equilibrium and the endemic equilibrium
are given. Besides, for the epidemic model with time-delay
Kang and Fu [25] presented a new 𝑆𝐼𝑆 model with an
infective vector on scale-free networks and the global stability
of equilibrium is proved. The influences of treatment and
vaccination efforts on a dynamic disease model in presence
of incubation delays and relapse are studied and sufficient
conditions for the local stability of the equilibriumare derived
[26].

However, few papers are available in the literature to
consider variant factors in the epidemic spreading from a
systematic framework. In real world, certain variants exist
in the infectious disease transmitting, resulting from some
factors including gene mutation and cell division environ-
ment. Viruses evolve rapidly because they have strong ability
of propensity for genetic variation and short generation time,
which leads to evading human immunization response and
obtaining drug resistance. For example, influenza viruses can
be classified into three major types (A, B, and C). There
are many different virus forms because of mutation; type
A infects many animal species including humans, while
type B and type C viruses are mainly human pathogens. If
individuals are affected by viruses, not all infected individuals
can be recovered. Some of them may suffer from other
diseases because virus variation or the infectious individuals
contacted with variants. In fact, some infectious persons,
who may be infected by some diseases, would have certain
probability to become variantmembers of another group. It is
necessary to propose a newmodel considering this condition.
How to build models with variant factors in the epidemics
spreading becomes a challenge.Therefore, the paper presents
a novel 𝑆𝐼𝑉𝑅𝑆 epidemic spreadingmodel considering variant
factors, where 𝑆 stands for the susceptible and 𝐼, 𝑉, and
𝑅 stand for the infectious, the variant, and the recovered,
respectively.

Given the mechanism of the 𝑆𝐼𝑉𝑅𝑆 model in a homo-
geneous network, which is only composed by blank nodes
initially, the entire population can be divided into four groups
described by the symbols of 𝑆, 𝐼, 𝑉, and 𝑅, respectively. They
denote four epidemiological statuses: susceptible, infectious,

variant, and recovered. All new individuals are supposed to
be blank nodes in complex networks. When a susceptible
individual contacts the other infected individual, this indi-
vidual may be infectious with certain probability. Then an
infectious individual would have only three states including
infectious, variant, and recovered. The infectious individuals
would become the variants with certain probability affected
by some factors such as genemutation and the indeterminacy
of cell division. Similarly, an infectious person may become
a variant with certain probability after contacting with a
variant. Usually, human body can be protected by one’s
immune system. Some infectious individuals with recovery
probability may become the recovered, while others will keep
the infectious status.We assume that the four groups have the
same mortality rate.

In this paper, a novel 𝑆𝐼𝑉𝑅𝑆 epidemic spreading model
with virus variation in complex homogeneous network is
proposed and investigated.The rest of this paper is organized
as follows. In Section 2, the propagation mechanism of
the 𝑆𝐼𝑉𝑅𝑆 model in complex networks is presented, and
mean-field equations are used to describe the dynamics of
epidemic spreadingmodel with virus variation.The existence
of endemic equilibrium is considered. Section 3 is devoted
to discuss the global stability of the disease-free equilibrium,
which is followed by the discussion of the system uniform
persistence in Section 4. Then the proofs of global stability
of an endemic equilibrium are presented in Section 5. In
Section 6, numerical simulations are performed to illustrate
obtained theoretical results. Finally, conclusions are given in
Section 7.

2. Epidemic Spreading Model and Its Property

2.1.The SIVRSModel. As described above, in the paper a new
𝑆𝐼𝑉𝑅𝑆model is established.Themodel involves a new variant
groupwhich is caused by the infectious variation. Assume the
number of nodes is 𝑁 in a closed complex network, which
includes four statuses susceptible 𝑆, infectious 𝐼, variant 𝑉,
and recovered 𝑉 as well as some initial blank nodes. All new
nodes produced from blank nodes are susceptible.

The flow chart of epidemic spreading is shown in Figure 1.
Assume in a homogeneous network only composed by

blank nodes initially the susceptible individuals are produced
by the blank nodes; the probability is characterized as 𝛿.
Others come from the recovered group with the probability
𝜙. A susceptible individual will become infectious with
probability 𝛼 if he/she contacts the infected individual. Then
an infectious individual may perhaps become one variant
when he/she has tight relation with variants or is affected
by other factors. We assume that the variant probability is 𝛾
when contacting with a variant. In the process of epidemic
spreading, an infectious individual may become the variant
with internal probability 𝜂. Some infectious individuals with
recovery probability 𝛽 may recover and others will keep the
infectious status. In this paper, the four groups are supposed
to have the same mortality rate 𝜇. Then the 𝑆𝐼𝑉𝑅𝑆 epidemic
spreading rules can be summarized as follows.
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Figure 1: A schematic representation of 𝑆𝐼𝑉𝑅𝑆 epidemic spreading
model.

(1) Apart from the four groups in a closed network,
there are blank nodes which exist in initial network.
The blank nodes may become susceptible ones with
probability 𝛿, namely, crude birth rate.

(2) The susceptible individual becomes infectious with
probability 𝛼when contacting with an infectious one,
namely, infection rate.

(3) An infectious individual can be recovered with prob-
ability 𝛽, namely, recovery rate.

(4) The variants coming from some of the infectious
nodes at a variation rate 𝜂 (internal variation rate)
can reflect the variation factors. When an infectious
individual contacts with a variant, the individual may
become a variant with probability 𝛾 ( contact variant
rate).

(5) The recovered node turns into susceptible with prob-
ability 𝜙 after a period of time due to the loss of
immunity. For the four groups in the network, all
individuals will become blank with probability 𝜇,
namely, natural mortality rate.

A closed and homogeneous network consisting of 𝑁
individuals is investigated in this paper. Individuals in the
network can be represented with nodes and the contact
between different individuals can be denoted by edges.
Then the network can be described by an undirected graph
𝐺 = (𝑉, 𝐸), where 𝑉 and 𝐸 denote the set of nodes and
edges, respectively. Therefore, a differential equation model
is derived based on the aforementioned rules and the basic
assumptions:

𝑑𝑆

𝑑𝑡
= 𝛿 (1 − 𝑁) − 𝛼 ⟨𝑘⟩ 𝑆𝐼 + 𝜙𝑅 − 𝜇𝑆,

𝑑𝐼

𝑑𝑡
= 𝛼 ⟨𝑘⟩ 𝑆𝐼 − 𝛾 ⟨𝑘⟩ 𝐼𝑉 − (𝜂 + 𝛽 + 𝜇) 𝐼,

𝑑𝑉

𝑑𝑡
= 𝛾 ⟨𝑘⟩ 𝐼𝑉 + 𝜂𝐼 − 𝜇𝑉,

𝑑𝑅

𝑑𝑡
= 𝛽𝐼 − 𝜙𝑅 − 𝜇𝑅,

(1)

where ⟨𝑘⟩ denotes the average degree of the network.

The total population satisfies𝑁 = 𝑆 + 𝐼 + 𝑉 + 𝑅, and the
following equation is obtained:

𝑑𝑁

𝑑𝑡
= 𝛿 − (𝛿 + 𝜇)𝑁 (2)

which is derived by adding the four equations in (1).
In (2) 𝑁 will eventually tend to 𝑁

0
= 𝛿/(𝛿 + 𝜇) with the

exponential decay. Therefore, assume that 𝑁(0) = 𝑁
0
. The

closed and positively invariant set for (1) is Σ = {(𝑆, 𝐼, 𝑉, 𝑅) ∈
R4
+
: 0 ≤ 𝑆 + 𝐼 + 𝑉 + 𝑅 = 𝑁

0
≤ 1}, where R4

+
denotes the

nonnegative cone ofR4 with its lower dimensional faces. Use
𝜕Σ and Σ∘ to denote the boundary and interior of Σ in R4

+
,

respectively.

2.2. Existence of Equilibrium. The system (1) has a disease-
free equilibrium (DFE) 𝐸

0
, where

𝐸
0
= (𝑆
0
, 𝐼
0
, 𝑉
0
, 𝑅
0
) = (

𝛿

𝛿 + 𝜇
, 0, 0, 0) . (3)

Denote the basic reproduction number parameter as

𝑅
0
=
𝛼 ⟨𝑘⟩ 𝑆

0
− 𝛾 ⟨𝑘⟩𝑉

0

𝜂 + 𝛽 + 𝜇
=

𝛼 ⟨𝑘⟩ 𝛿

(𝛿 + 𝜇) (𝜂 + 𝛽 + 𝜇)
. (4)

The following theorem summarizes the parameter restric-
tions on the existence of equilibrium.

Theorem 1. If 𝑅
0
> 1 and the inequality

1 > 𝜂 >
𝛼 (1 − 𝛾 ⟨𝑘⟩)

𝛼 + 𝛾
(5)

is satisfied, there are two endemic equilibria for system (1).

Proof. Assume that 𝐸∗ = (𝑆
∗

, 𝐼
∗

, 𝑉
∗

, 𝑅
∗

) is an endemic
equilibrium (EE) of system (1). According to system (1), we
have

𝛿 (1 − 𝑁
∗

) − 𝛼 ⟨𝑘⟩ 𝑆
∗

𝐼
∗

+ 𝜙𝑅
∗

− 𝜇𝑆
∗

= 0,

𝛼 ⟨𝑘⟩ 𝑆
∗

𝐼
∗

− 𝛾 ⟨𝑘⟩ 𝐼
∗

𝑉
∗

− (𝜂 + 𝛽 + 𝜇) 𝐼
∗

= 0,

𝛾 ⟨𝑘⟩ 𝐼
∗

𝑉
∗

+ 𝜂𝐼
∗

− 𝜇𝑉
∗

= 0,

𝛽𝐼
∗

− 𝜙𝑅
∗

− 𝜇𝑅
∗

= 0.

(6)

For (6) a straightforward calculation leads to

𝑆
∗

=
𝜂 + 𝛽 + 𝜇

𝛼 ⟨𝑘⟩
+

𝛾𝜂𝐼
∗

𝛼 (𝜇 − 𝛾 ⟨𝑘⟩ 𝐼∗)
,

𝑉
∗

=
𝜂𝐼
∗

𝜇 − 𝛾 ⟨𝑘⟩ 𝐼∗
,

𝑅
∗

=
𝛽

𝜇 + 𝜙
𝐼
∗

.

(7)

From (7) 𝜇 − 𝛾⟨𝑘⟩𝐼∗ > 0, which implies that

0 < 𝐼
∗

< min{1,
𝜇

(𝛾 ⟨𝑘⟩)
} , (8)
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the component 𝐼∗ is a positive solution of

𝑝 (𝐼
∗

) = 𝐴𝐼
∗2

+ 𝐵𝐼
∗

+ 𝐶 = 0, (9)

where

𝐴 = 𝛼𝛾 ⟨𝑘⟩
2

(𝜇 + 𝜙 + 𝛽) ,

𝐵 = −𝜂 ⟨𝑘⟩ (𝜇 + 𝜙) (𝛼 + 𝛾) − 𝛼 ⟨𝑘⟩ 𝜇 (𝜇 + 𝜙 + 𝛽)

+ (𝜇 + 𝜙) (𝜂 + 𝛽 + 𝜇) (1 − 𝛾 ⟨𝑘⟩ 𝑅
0
) ,

𝐶 = 𝜇 (𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙) (𝑅
0
− 1) .

(10)

Therefore, consider the following:

(1) If 𝑅
0
< 1, we have 𝐶 < 0; (9) has only one positive

solution.

(2) If 𝑅
0
= 1, we have 𝐶 = 0; (9) has only one positive

solution −𝐵/𝐴.

(3) If 𝑅
0
> 1, we have 𝐶 > 0:

(i) if 𝐵 > 0, the positive solution of (9) does not
exist;

(ii) if 𝐵 < 0 and 𝐵 > −2√𝐴𝐶, the solution of (9)
does not exist;

(iii) if 𝐵 < 0 and 𝐵 = −2√𝐴𝐶, (9) has only one
positive solution;

(iv) if 𝐵 < 0 and 𝐵 < −2√𝐴𝐶, (9) has two positive
solutions.

Therefore, if 𝑅
0
> 1, the solution of (9) exists only when

𝐵 ≤ −2√𝐴𝐶.
According to the inequality 𝑎 + 𝑏 ≥ 2√𝑎𝑏, ∀𝑎, 𝑏 ∈ 𝑍

+,
assume 𝑅

0
> 1, choose 𝑎 = 𝛼⟨𝑘⟩𝜇(𝜇 + 𝜙 + 𝛽), 𝑏 = 𝛾⟨𝑘⟩(𝜂 +

𝛽 + 𝜇)(𝜇 + 𝜙)(𝑅
0
− 1), and then

2√𝐴𝐶

= 2√𝛼𝛾 ⟨𝑘⟩
2

𝜇 (𝜇 + 𝜙 + 𝛽) (𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙) (𝑅
0
− 1)

< 𝛼 ⟨𝑘⟩ 𝜇 (𝜇 + 𝜙 + 𝛽)

+ 𝛾 ⟨𝑘⟩ (𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙) (𝑅
0
− 1)

= 𝛼 ⟨𝑘⟩ 𝜇 (𝜇 + 𝜙 + 𝛽) + 𝛾 ⟨𝑘⟩ 𝑅
0
(𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙)

− 𝛾 ⟨𝑘⟩ (𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙) .

(11)

If the inequality 𝛾⟨𝑘⟩(𝜂 + 𝛽 + 𝜇)(𝜇 + 𝜙) > (𝜇 + 𝜙)[𝜂 + 𝛽 + 𝜇 −
𝜂⟨𝑘⟩(𝛼 + 𝛾)] is satisfied, we have

𝜂 + 𝛽 + 𝜇 <
𝜂 ⟨𝑘⟩ (𝛼 + 𝛾)

1 − 𝛾 ⟨𝑘⟩
. (12)

Then the following equation is obtained:

2√𝐴𝐶 < 𝛼 ⟨𝑘⟩ 𝜇 (𝜇 + 𝜙 + 𝛽)

+ 𝛾 ⟨𝑘⟩ 𝑅
0
(𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙)

− 𝛾 ⟨𝑘⟩ (𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙)

< 𝛼 ⟨𝑘⟩ 𝜇 (𝜇 + 𝜙 + 𝛽)

+ 𝛾 ⟨𝑘⟩ 𝑅
0
(𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙)

− [𝜂 + 𝛽 + 𝜇 − 𝜂 ⟨𝑘⟩ (𝛼 + 𝛾)] (𝜇 + 𝜙)

< 𝛼 ⟨𝑘⟩ 𝜇 (𝜇 + 𝜙 + 𝛽)

+ (𝜂 + 𝛽 + 𝜇) (𝜇 + 𝜙) (𝛾 ⟨𝑘⟩ 𝑅
0
− 1)

+ 𝜂 ⟨𝑘⟩ (𝜇 + 𝜙) (𝛼 + 𝛾) < −𝐵

(13)

which implies system (1) has two endemic equilibria.
When 𝑅

0
> 1,

𝛼 ⟨𝑘⟩

𝜂 + 𝛽 + 𝜇
> 𝑅
0
=

𝛼 ⟨𝑘⟩ 𝛿

(𝛿 + 𝜇) (𝜂 + 𝛽 + 𝜇)
> 1 (14)

which can transfer to inequality 𝛼⟨𝑘⟩ > 𝜂 + 𝛽 + 𝜇.
If𝛼 < 𝜂(𝛼+𝛾)/(1−𝛾⟨𝑘⟩), we have 1 > 𝜂 > 𝛼(1−𝛾⟨𝑘⟩)/(𝛼+

𝛾). Then inequality (12) is satisfied.

Remark 2. According to this theorem, if the reproduction
number parameter is above the threshold, then the endemic
equilibrium is globally asymptotically stable, which will be
discussed further in Section 5.

3. Global Stability of the Disease-Free
Equilibrium

Definition 3. If the equilibrium is stable under the meaning
of Lyapunov, for 𝛿(𝜀, 𝑡

0
) and ∀𝜇 > 0, there is real number

𝑇(𝜇, 𝛿, 𝑡
0
) > 0 which makes any initial value 𝑥

0
of inequality

‖𝑥
0
− 𝑥
𝑒
‖ ≤ 𝛿(𝜀, 𝑡

0
), 𝑡 ≥ 𝑡

0
, satisfy the following inequality:

󵄩󵄩󵄩󵄩𝜙 (𝑡; 𝑥0, 𝑡0 − 𝑥𝑒)
󵄩󵄩󵄩󵄩 ≤ 𝜇, ∀𝑡 ≥ 𝑡

0
+ 𝑇 (𝜇, 𝛿, 𝑡

0
) ; (15)

then the equilibrium is asymptotically stable.

The Jacobian matrix at the disease-free equilibrium 𝐸
0
of

system (1) is

𝐽 (𝐸
0
)

= (

−𝛿 − 𝜇 −𝛿 − 𝛼 ⟨𝑘⟩ 𝑆
0

−𝛿 −𝛿 + 𝜙

0 𝛼 ⟨𝑘⟩ 𝑆
0
− (𝜂 + 𝛽 + 𝜇) 0 0

0 𝜂 −𝜇 0

0 𝛽 0 −𝜇 − 𝜙

).

(16)

Obviously, if 𝑅
0

< 1, all eigenvalues of matrix (16)
are negative. Then the disease-free equilibrium 𝐸

0
is locally

asymptotically stable in Σ. Moreover, if 𝑅
0
> 1, there is one

positive eigenvalue and 𝐸
0
is unstable.
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Theorem 4. If 𝑅
0
< 1, the disease-free equilibrium (DFE) 𝐸

0

is globally asymptotically stable in Σ and if 𝑅
0
> 1, the disease-

free equilibrium (DFE) 𝐸
0
is unstable in Σ.

Proof. Let 𝐿(𝑆, 𝐼, 𝑉, 𝑅) = 𝐼 > 0 as a Lyapunov function; then
𝐿(𝐸
0
) = 0. When 𝑅

0
< 1

𝑑𝐿

𝑑𝑡
(𝑆, 𝐼, 𝑉, 𝑅) = 𝛼 ⟨𝑘⟩ 𝑆𝐼 − 𝛾 ⟨𝑘⟩ 𝐼𝑉 − (𝜂 + 𝛽 + 𝜇) 𝐼

< 𝛼 ⟨𝑘⟩ 𝑆𝐼 − (𝜂 + 𝛽 + 𝜇) 𝐼

< 𝐼 (𝛼 ⟨𝑘⟩𝑁
0
− (𝜂 + 𝛽 + 𝜇))

< 𝐼 (𝜂 + 𝛽 + 𝜇) (𝑅
0
− 1) < 0.

(17)

𝐿 is positive definite and 𝐿̇ is negative definite. Therefore, the
disease-free equilibrium (DFE) 𝐸

0
is globally asymptotically

stable in Σ; the following result can be given.

4. Uniform Persistence

In this section, the uniform persistence of system (1) will be
discussed when the basic reproduction number 𝑅

0
> 1.

Definition 5 (see [33]). System (1) is said to be uniformly per-
sistent if there exists a constant 0 < 𝑐 < 1, which makes any
solution (𝑆(𝑡), 𝐼(𝑡), 𝑉(𝑡), 𝑅(𝑡)) with (𝑆(0), 𝐼(0), 𝑉(0), 𝑅(0)) ∈
Σ
∘ satisfy

min {lim lim
𝑡→∞

𝑆 (𝑡) , lim
𝑡→∞

𝐼 (𝑡) , lim
𝑡→∞

𝑉 (𝑡) , lim
𝑡→∞

𝑅 (𝑡)}

≥ 𝑐.

(18)

Let𝑋 be a locally compactmetric space withmetric 𝜕 and
let Γ be a closed nonempty subset of𝑋with boundary 𝜕Γ and
interior Γ∘. Obviously, 𝜕Γ is a closed subset of Γ. Let Φ

𝑡
be

a dynamical system defined on Γ. A set 𝐵 in 𝑋 is said to be
invariant if Φ

𝑡
(𝐵, 𝑡) = 𝐵. Define 𝑀

𝜕
fl {𝑥 ∈ 𝜕Γ : Φ

𝑡
𝑥 ∈

𝜕Γ, ∀𝑡 ≥ 0}.

Lemma 6 (see [34]). Assume the following:

(H1) Φ
𝑡
has a global attractor.

(H2) There exists an 𝑀 = {𝑀
1
, . . . ,𝑀

𝑘
} of pair-wise

disjoint, compact, and isolated invariant set on 𝜕Γ such
that

(a) ⋃
𝑥∈𝑀𝜕

𝜔(𝑥) ⊂ ⋃
𝑘

𝑗=1
𝑀
𝑗
;

(b) no subsets of𝑀 form a cycle on 𝜕Γ;
(c) each𝑀

𝑗
is also isolated in Γ;

(d) 𝑊𝑠(𝑀
𝑗
) ∩ Γ
∘

= 𝜙 for each 1 ≤ 𝑗 ≤ 𝑘, where
𝑊
𝑠

(𝑀
𝑗
) is the stable manifold of𝑀

𝑗
. Then Φ

𝑡
is

uniformly persistent with respect to Γ∘.

According to Lemma 6, the following result is obtained.

Theorem 7. When 𝑅
0
> 1, system (1) is uniformly persistent.

Proof. Let

Γ = Σ = {(𝑆, 𝐼, 𝑉, 𝑅) ∈ R
+

4
| 0 ≤ 𝑆 + 𝐼 + 𝑉 + 𝑅 ≤ 1} ,

Γ
∘

= {(𝑆, 𝐼, 𝑉, 𝑅) ∈ 𝐸 : 𝐼, 𝑉 > 0} ,

𝜕Γ =
Γ

Γ∘
.

(19)

Obviously,𝑀
𝜕
= 𝜕Γ.

Choose 𝑀 = {𝐸
0
}, 𝜔(𝑥) = {𝐸

0
} for all 𝑥 ∈ 𝑀

𝜕
. On 𝜕Γ,

system (1) reduces to 𝑆󸀠 = 𝛿−(𝛿+𝜇)𝑆, in which 𝑆(𝑡) → 𝛿/(𝛿+

𝜇) as 𝑡 → ∞. It is concluded that𝑀 = {𝐸
0
}, 𝜔(𝑥) = {𝐸

0
} for

all 𝑥 ∈ 𝑀
𝜕
, which indicates that hypotheses (a) and (b) hold.

When 𝑅
0
> 1, the disease-free equilibrium 𝐸

0
is unstable

according to Theorem 4 𝑊𝑠(𝑀) = 𝜕Γ. Hypotheses (c) and
(d) are then satisfied. Due to the ultimate boundedness of all
solutions of system (1), there is a global attractor,making (H1)
true.

5. Global Dynamics of Endemic Equilibrium

From the previous analysis, the disease dies out when 𝑅
0
> 1;

then the disease becomes endemic. In this section, Lyapunov
asymptotic stability theorem is used to investigate the globally
asymptotic stability of the endemic equilibrium 𝐸

∗ when
𝑅
0
> 1.

Theorem8. The endemic equilibrium𝐸
∗ is globally asymptot-

ically stable in Σ, whenever 𝑅
0
> 1.

Proof. Consider the following function:

𝑉
1
= ln [(𝑆 − 𝑆∗) + (𝐼 − 𝐼∗) + (𝑉 − 𝑉

∗

) + (𝑅 − 𝑅
∗

)

+ 1] .

(20)

Then the derivative of 𝑉
1
along the solution of (1) is given by

𝑉̇
1
=
𝜕𝑉
1

𝜕𝑆

𝑑𝑆

𝑑𝑡
+
𝜕𝑉
1

𝜕𝐼

𝑑𝐼

𝑑𝑡
+
𝜕𝑉
1

𝜕𝑉

𝑑𝑉

𝑑𝑡
+
𝜕𝑉
1

𝜕𝑅

𝑑𝑅

𝑑𝑡

=
(𝑑𝑆 + 𝑑𝐼 + 𝑑𝑉 + 𝑑𝑅) (1/𝑑𝑡)

(𝑆 − 𝑆∗) + (𝐼 − 𝐼∗) + (𝑉 − 𝑉∗) + (𝑅 − 𝑅∗) + 1
.

(21)

From (2), all solutions of (6) satisfy the equality

𝑁
∗

= 𝑆
∗

+ 𝐼
∗

+ 𝑉
∗

+ 𝑅
∗

=
𝛿

𝛿 + 𝜇
(22)

and 𝑁 = 𝑒
−(𝛿+𝜇)𝑡+𝐶

+ 𝛿/(𝛿 + 𝜇) ≤ 𝛿/(𝛿 + 𝜇), where 𝐶 is the
value that makes𝑁

0
= 𝛿/(𝛿 + 𝜇) satisfied.

Hence 𝑉
1
= ln(𝑁 − 𝑁

∗

+ 1) ≥ 0; then

𝑉̇
1
=

1

𝑁 − 𝛿/ (𝛿 + 𝜇) + 1

𝑑𝑁

𝑑𝑡

=
𝛿 + 𝜇

𝑁 − 𝛿/ (𝛿 + 𝜇) + 1
(

𝛿

𝛿 + 𝜇
− 𝑁) ≤ 0.

(23)

If and only if𝑁 = 𝛿/(𝛿 + 𝜇), 𝑉
1
= 0 and 𝑉̇

1
= 0 are satisfied.



6 Mathematical Problems in Engineering

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
50454035302520151050

S(t)
I(t)

V(t)
R(t)

t: time step

Th
e v

al
ue

s o
fS

(t
),
I(
t)

,V
(t

),
R

(t
)

(a) The states of disease-free equilibrium

0.2
0.4

0.6
0.8

1

0
0.2

0.4
0.6

0

0.1

0.2

0.3

IV (0.8, 0.2, 0, 0)
IV (0.6, 0.4, 0, 0)

IV (0.4, 0.6, 0, 0)

−0.2

−0.1

R
(t

)

S(t)
I(t) + V(t)
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Figure 2: (a) and (b) showed that the disease-free equilibrium 𝐸
0
of the system (1) is globally asymptotically stable with different initial

conditions (0.8, 0.2, 0, 0), (0.6, 0.3, 0.1, 0), and (0.4, 0.35, 0.2, 0.05) and the parameters ⟨𝑘⟩ = 10, 𝛼 = 0.8, 𝛽 = 0.5, 𝜂 = 0.2, 𝛿 = 0.5, 𝛾 = 0.2,
𝜙 = 0.01, and 𝜇 = 0.3; 𝑅

0
= 0.5 < 1. The value of DFE is 𝐸

0
= (0.625, 0, 0, 0).

𝑉
1
is positive definite and 𝑉̇

1
is negative definite. There-

fore, the function𝑉
1
is a Lyapunov function for system (1) and

the endemic equilibrium 𝐸
∗ is globally asymptotically stable

by Lyapunov asymptotic stability theorem [35]. The proof is
completed.

6. Numerical Simulation

To demonstrate the theoretical results obtained in this paper,
some numerical simulations will be discussed. In this paper,
the hypothetical set of initial values (IV) and parameter
values will be given as follows.

Consider the initial values of (𝑆(0), 𝐼(0), 𝑉(0), 𝑅(0)) are
set as (0.8, 0.2, 0, 0), (0.6, 0.3, 0.1, 0), and (0.4, 0.35, 0.2, 0.05),
respectively.

(1) The disease-free equilibrium: Set ⟨𝑘⟩ = 10, 𝛼 = 0.08,
𝛽 = 0.5, 𝜂 = 0.2, 𝛿 = 0.5, 𝛾 = 0.02, 𝜙 = 0.01, and
𝜇 = 0.3.𝑅

0
= 0.5 < 1 and the disease-free equilibrium

𝐸
0
= (0.625, 0, 0, 0) from the parameter values above

through the calculation. According toTheorem 4, the
disease-free equilibrium 𝐸

0
of system (1) is globally

asymptotically stable in Σ in this case. The simulation
results are shown in Figures 2(a) and 2(b).

(2) The endemic equilibrium: Set ⟨𝑘⟩ = 10, 𝛼 = 0.08,
𝛽 = 0.08, 𝜂 = 0.3, 𝛿 = 0.2, 𝛾 = 0.01, 𝜙 = 0.25, and
𝜇 = 0.02. By direct computation, 𝑅

0
= 1.818 > 1

and the endemic equilibrium 𝐸
∗

= (0.5435, 0.0201,

0.3395, 0.00596) can be obtained from the parameter
values above. According to Theorem 4, the positive
endemic equilibrium 𝐸

∗of system (1) is globally
asymptotically stable in Σ∘. The simulation results are
shown in Figures 3(a) and 3(b).

Figure 2 shows that if 𝑅
0
< 1, all solutions in Σ would

be attracted to the disease-free equilibrium 𝐸
0
regardless of

the initial values of system (1), which illustrates the validity
of Theorem 4. Similarly, it can be seen from Figure 3 that all
solutions inΣ∘ would be attracted to the endemic equilibrium
𝐸
∗ regardless of the initial values of system (1) if 𝑅

0
> 1 and

the conditions of Theorem 8 are satisfied, which is obviously
the content ofTheorem 4.Moreover, the relationship between
the values of equilibrium can be verified as shown in (24),
which is coincident with the theoretical results:

𝑆
0
+ 𝐼
0
+ 𝑉
0
+ 𝑅
0
= 𝑆
∗

+ 𝐼
∗

+ 𝑉
∗

+ 𝑅
∗

= −
𝛿

𝛿 + 𝜇
. (24)

7. Conclusion

The stability of the 𝑆𝐼𝑉𝑅𝑆 epidemic spreading model with
virus variation in complex networks has been discussed in
this paper. The model involves a new variant group which is
caused by the infectious variation. By analyzing the model,
the disease-free equilibrium 𝐸

0
is proved to exist when the

basic reproduction number 𝑅
0
is less than 1. The analysis

result reveals that the infectious disease dies out when 𝑅
0
is

more than 1 and it becomes endemic.The existing conditions
of endemic equilibrium related with the variation rate and
the network nodes degree are obtained. Besides, the global
asymptotically stability condition of the disease-free equilib-
rium is obtained by the Routh-Hurwitz stability criterion and
the Lyapunov stability criterion. And the condition of the
system uniform persistence is also given. The proof of the
stability of endemic equilibrium is also illustrated. Finally,
a numerical simulation is given to illustrate the correctness
of the disease-free equilibrium and the endemic equilibrium
results.
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Figure 3: (a) and (b) showed that the disease-free equilibrium𝐸
∗ of system (1) is globally asymptotically stable with different initial conditions

(0.8, 0.2, 0, 0), (0.6, 0.3, 0.1, 0), and (0.4, 0.35, 0.2, 0.05) and the parameter values 𝛼 = 0.08, 𝛽 = 0.08, 𝜂 = 0.3, 𝛿 = 0.2, 𝛾 = 0.1, 𝜙 = 0.25,
𝜇 = 0.02, and ⟨𝑘⟩ = 10; 𝑅

0
= 1.818 > 1. The value of EE is 𝐸∗ = (0.5435, 0.0201, 0.3395, 0.00596).
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