107 research outputs found

    Complete genome sequences of escherichia coli phages vB_EcoM-EP75 and vB_EcoP-EP335

    Get PDF
    Phages vB_EcoM-EP75 (EP75) and vB_EcoP-EP335 (EP335) specifically infect Shiga toxin (Stx)-producing Escherichia coli (STEC) O157 strains. EP75 has a genome size of 158,143 bp and belongs to the genus Vi1virus The genome size of EP335 is 76,622 bp, and it belongs to the genus Phieco32virus

    Inflammatory conditions dictate the effect of mesenchymal stem or stromal cells on B cell function

    Get PDF
    The immunomodulatory capacity of mesenchymal stem or stromal cells (MSC) makes them a promising tool for treatment of immune disease and organ transplantation. The effects of MSC on B cells are characterized by an abrogation of plasmablast formation and induction of regulatory B cells (Bregs). It is, however, unknown how MSC interact with B cells under inflammatory conditions. In this study, adipose tissue-derived MSC were pretreated with 50 ng/ml IFN-γ for 96 h (MSC-IFN-γ) to simulate inflammatory conditions. Mature B cells were obtained from spleens by CD43- selection. B cells were co-cultured with MSC and stimulated with anti-IgM, anti-CD40, and IL-2; and after 7 days, B cell proliferation, phenotype, Immunoglobulin-G (IgG), and IL-10 production were analyzed. MSC did not inhibit B cell proliferation but increased the percentage of CD38high CD24high B cells (Bregs) and IL-10 production, while MSC-IFN-γ significantly reduced B cell proliferation and inhibited IgG production by B cells in a more potent fashion but did not induce Bregs or IL-10 production. Both MSC and MSC-IFN-γ required proximity to target cells and being metabolically active to exert their effects. Indoleamine 2,3 dioxygenase expression was highly induced in MSC-IFN-γ and was responsible of the anti-proliferative and Breg reduction since addition of tryptophan (TRP) restored MSC properties. Immunological conditions dictate the effect of MSC on B cell function. Under immunological quiescent conditions, MSC stimulate Breg induction; whereas, under inflammatory conditions, MSC inhibit B cell proliferation and maturation through depletion of TRP. This knowledge is useful for customizing MSC therapy for specific purposes by appropriate pretreatment of MSC

    Cytokine treatment optimises the immunotherapeutic effects of umbilical cord-derived MSC for treatment of inflammatory liver disease

    Get PDF
    Background: Mesenchymal stromal cells (MSC) possess immunomodulatory properties and low immunogenicity, both crucial properties for their development into an effective cellular immunotherapy. They have shown benefit in clinical trials targeting liver diseases; however the efficacy of MSC therapy will benefit from improvement of the immunomodulatory and immunogenic properties of MSC. Methods: MSC derived from human umbilical cords (ucMSC) were treated for 3 days in vitro with various inflammatory factors, interleukins, vitamins and serum deprivation. Their immunogenicity and immunomodulatory capacity were examined by gene-expression analysis, surface-marker expressions, IDO activity, PGE2 secretion and inhibition of T cell proliferation and IFNγ production. Furthermore, their activation of NK cell cytotoxicity was investigated via CD107a expre

    Inflammatory conditions dictate the effect of Mesenchymal stem or Stromal cells on B cell function

    Get PDF
    The immunomodulatory capacity of mesenchymal stem or stromal cells (MSC) makes them a promising tool for treatment of immune disease and organ transplantation. The effects of MSC on B cells are characterized by an abrogation of plasmablast formation and induction of regulatory B cells (Bregs). It is, however, unknown how MSC interact with B cells under inflammatory conditions. In this study, adipose tissue-derived MSC were pretreated with 50 ng/ml IFN-γ for 96 h (MSC-IFN-γ) to simulate inflammatory conditions. Mature B cells were obtained from spleens by CD43− selection. B cells were co-cultured with MSC and stimulated with anti-IgM, anti-CD40, and IL-2; and after 7 days, B cell proliferation, phenotype, Immunoglobulin-G (IgG), and IL-10 production were analyzed. MSC did not inhibit B cell proliferation but increased the percentage of CD38high CD24high B cells (Bregs) and IL-10 production, while MSC-IFN-γ significantly reduced B cell proliferation and inhibited IgG production by B cells in a more potent fashion but did not induce Bregs or IL-10 production. Both MSC and MSC-IFN-γ required proximity to target cells and being metabolically active to exert their effects. Indoleamine 2,3 dioxygenase expression was highly induced in MSC-IFN-γ and was responsible of the anti-proliferative and Breg reduction since addition of tryptophan (TRP) restored MSC properties. Immunological conditions dictate the effect of MSC on B cell function. Under immunological quiescent conditions, MSC stimulate Breg induction; whereas, under inflammatory conditions, MSC inhibit B cell proliferation and maturation through depletion of TRP. This knowledge is useful for customizing MSC therapy for specific purposes by appropriate pretreatment of MSC

    Effects of the noradrenergic agonist clonidine on temporal and spatial attention

    Get PDF
    Rationale: Recent theories posit an important role for the noradrenergic system in attentional selection in the temporal domain. In contrast, the spatially diffuse topographical projections of the noradrenergic system are inconsistent with a direct role in spatial selection. Objectives: To test the hypotheses that pharmacological attenuation of central noradrenergic activity should (1) impair performance on the attentional blink task, a task requiring the selection of targets in a rapid serial visual stream of stimuli; and (2) leave intact the efficiency of the search for a target in a two-dimensional visuospatial stimulus array. Materials and methods: Thirty-two healthy adult human subjects performed an attentional blink task and a visual search task in a double-blind, placebo-controlled, between-subject study investigating the effects of the α2 adrenoceptor agonist clonidine (150 μg, oral dose). Results: No differential effects of clonidine vs placebo were found on the attentional blink performance. Clonidine slowed overall reaction times in the visual search task but did not impair the efficiency of the visual search. Conclusions: The attentional blink results are inconsistent with recent theories about the role of the noradrenergic system in temporal filtering and in mediating the attentional blink. This discrepancy between theory and data is discussed in detail. The visual search results, in combination with previous findings, suggest that the noradrenergic system is not directly involved in spatial attention processes but instead can modulate these processes in an indirect fashion. © 2007 Springer-Verlag

    The Potential and Challenges of Digital Well-Being Interventions: Positive Technology Research and Design in Light of the Bitter-Sweet Ambivalence of Change

    Get PDF
    Along with the dissemination of technical assistance in nearly every part of life, there has been growing interest in the potential of technology to support well-being and human flourishing. “Positive technology” thereby takes the responsible role of a “digital coach,” supporting people in achieving personal goals and behavior change. The design of such technology requires knowledge of different disciplines such as psychology, design and human-computer interaction. However, possible synergies are not yet used to full effect, and it needs common frameworks to support a more deliberate design of the “therapeutic interaction” mediated through technology. For positive technology design, positive psychology, and resource oriented approaches appear as particularly promising starting point. Besides a general fit of the basic theoretical conceptions of human change, many elements of established interventions could possibly be transferred to technology design. However, besides the power of focusing on the positive, another psychological aspect to consider are the bitter components inherent to change, such as the confrontation with a negative status quo, threat of self-esteem, and the effort required. The present research discusses the general potential and challenges within positive technology design from an interdisciplinary perspective with theoretical and practical contributions. Based on the bitter-sweet ambivalence of change as present in many psychological approaches of motivation and behavior change, the bitter-sweet continuum serves as a proxy for the mixed emotions and cognitions related to change. An empirical investigation of those factors among 177 users of self-improvement technologies provides initial support for the usefulness of the bitter-sweet perspective in understanding change dynamics. In a next step, the bitter-sweet concept is transformed into different design strategies to support positive change. The present article aims to deepen the discussion about the responsible role of technology as a well-being enhancement tool and to provide a fruitful frame for different disciplines involved in positive technology. Two aspects are highlighted: First, investigating well-being technology as a form of “therapeutic interaction,” focusing on the need for sensible design solutions in the emerging dialogue between technology and user. Second, a stronger consideration of the bitter-sweet ambivalence of change, utilizing (positive) psychology interventions to full effect
    corecore