104 research outputs found

    Vegetation diversity of conventional and organic hedgerows in Denmark

    Get PDF
    Many attempts have been made to reduce the impact of modern conventional farming on the environment and semi-natural ecosystems. One of them is organic farming, known primarily for the absence of pesticides and artificial fertilisers. The objective of this study was to study and test the differences in the spontaneous vegetation of comparable hedgerows in the same area situated within organic and conventional farming systems. The hedge bottom vegetation was surveyed during August 2001 in 13 hedgerows of each farming system. Farming type had not changed on either side of the hedgerows for the lifetime of the hedges (10-14 years). Sampling was associated with a set of 16 measured environmental variables. In the two farming systems hedgerows were comparable in terms of landscape, age, soil type, nutrient status and width. A mixed analysis of variance found no significant difference in measured soil and radiation variables between farming types. Farming types only differed in the use of pesticides. Significant differences between farming types in plant species diversity at alpha, beta and gamma levels were found. Also more species that normally occur in semi-natural habitats were found on organic farms. There was an overlap in species composition between farming type, but a slightly higher species turnover on conventional farms. The ordination axes were highly correlated with calibrated Ellenberg values of fertility, light and soil moisture. Soil fFertility and farming type were important factors to explain variation in species composition. Organic farming had a significantly reduced impact on hedge bottom vegetation compared to conventional farming. Higher extinction rates due to pesticide drift and immigration rates due to pesticide drift rates oin conventional farminsg may be responsible for the significantly higher species diversity and different species composition in hedges on organic farms. The differences in species diversity and plant types are briefly discussed

    Shuttling an electron spin through a silicon quantum dot array

    Full text link
    Coherent links between qubits separated by tens of micrometers are expected to facilitate scalable quantum computing architectures for spin qubits in electrically-defined quantum dots. These links create space for classical on-chip control electronics between qubit arrays, which can help to alleviate the so-called wiring bottleneck. A promising method of achieving coherent links between distant spin qubits consists of shuttling the spin through an array of quantum dots. Here, we use a linear array of four tunnel-coupled quantum dots in a 28Si/SiGe heterostructure to create a short quantum link. We move an electron spin through the quantum dot array by adjusting the electrochemical potential for each quantum dot sequentially. By pulsing the gates repeatedly, we shuttle an electron forward and backward through the array up to 250 times, which corresponds to a total distance of approximately 80 {\mu}m. We make an estimate of the spin-flip probability per hop in these experiments and conclude that this is well below 0.01% per hop.Comment: 11 pages, 3 main figures, 6 appendix figure

    Two-qubit logic between distant spins in silicon

    Full text link
    Direct interactions between quantum particles naturally fall off with distance. For future-proof qubit architectures, however, it is important to avail of interaction mechanisms on different length scales. In this work, we utilize a superconducting resonator to facilitate a coherent interaction between two semiconductor spin qubits 250 Îź\mum apart. This separation is several orders of magnitude larger than for the commonly employed direct interaction mechanisms in this platform. We operate the system in a regime where the resonator mediates a spin-spin coupling through virtual photons. We report anti-phase oscillations of the populations of the two spins with controllable frequency. The observations are consistent with iSWAP oscillations and ten nanosecond entangling operations. These results hold promise for scalable networks of spin qubit modules on a chip.Comment: 17 pages, 9 figure

    Predictive response-relevant clustering of expression data provides insights into disease processes

    Get PDF
    This article describes and illustrates a novel method of microarray data analysis that couples model-based clustering and binary classification to form clusters of ;response-relevant' genes; that is, genes that are informative when discriminating between the different values of the response. Predictions are subsequently made using an appropriate statistical summary of each gene cluster, which we call the ;meta-covariate' representation of the cluster, in a probit regression model. We first illustrate this method by analysing a leukaemia expression dataset, before focusing closely on the meta-covariate analysis of a renal gene expression dataset in a rat model of salt-sensitive hypertension. We explore the biological insights provided by our analysis of these data. In particular, we identify a highly influential cluster of 13 genes-including three transcription factors (Arntl, Bhlhe41 and Npas2)-that is implicated as being protective against hypertension in response to increased dietary sodium. Functional and canonical pathway analysis of this cluster using Ingenuity Pathway Analysis implicated transcriptional activation and circadian rhythm signalling, respectively. Although we illustrate our method using only expression data, the method is applicable to any high-dimensional datasets

    Prevalence of variations in melanoma susceptibility genes among Slovenian melanoma families

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two high-risk genes have been implicated in the development of CM (cutaneous melanoma). Germline mutations of the CDKN2A gene are found in < 25% of melanoma-prone families and there are only seven families with mutation of the <it>CDK4 </it>gene reported to date. Beside those high penetrance genes, certain allelic variants of the <it>MC1R </it>gene modify the risk of developing the disease.</p> <p>The aims of our study were: to determine the prevalence of germline <it>CDKN2A </it>mutations and variants in members of families with familial CM and in patients with multiple primary CM; to search for possible <it>CDK4 </it>mutations, and to determine the frequency of variations in the <it>MC1R </it>gene.</p> <p>Methods</p> <p>From January 2001 until January 2007, 64 individuals were included in the study. The group included 28 patients and 7 healthy relatives belonging to 25 families, 26 patients with multiple primary tumors and 3 children with CM. Additionally 54 healthy individuals were included as a control group. Mutations and variants of the melanoma susceptibility genes were identified by direct sequencing.</p> <p>Results</p> <p>Seven families with CDKN2A mutations were discovered (7/25 or 28.0%). The L94Q mutation found in one family had not been previously reported in other populations. The D84N variant, with possible biological impact, was discovered in the case of patient without family history but with multiple primary CM. Only one mutation carrier was found in the control group. Further analysis revealed that c.540C>T heterozygous carriers were more common in the group of CM patients and their healthy relatives (11/64 vs. 2/54). One p14ARF variant was discovered in the control group and no mutations of the <it>CDK4 </it>gene were found.</p> <p>Most frequently found variants of the <it>MC1R </it>gene were T314T, V60L, V92M, R151C, R160W and R163Q with frequencies slightly higher in the group of patients and their relatives than in the group of controls, but the difference was statistically insignificant.</p> <p>Conclusion</p> <p>The present study has shown high prevalence of p16INK4A mutations in Slovenian population of familial melanoma patients (37%) and an absence of p14ARF or <it>CDK4 </it>mutations.</p

    The multifunctional roles of vegetated strips around and within agricultural fields : A systematic map protocol.

    Get PDF
    Background: Agriculture and agricultural intensification can have significant negative impacts on the environment, including nutrient and pesticide leaching, spreading of pathogens, soil erosion and reduction of ecosystem services provided by terrestrial and aquatic biodiversity. The establishment and management of vegetated strips adjacent to farmed fields (including various field margins, buffer strips and hedgerows) are key mitigation measures for these negative environmental impacts and environmental managers and other stakeholders must often make decisions about how best to design and implement vegetated strips for a variety of different outcomes. However, it may be difficult to obtain relevant, accurate and summarised information on the effects of implementation and management of vegetated strips, even though a vast body of evidence exists on multipurpose vegetated strip interventions within and around fields. To improve the situation, we describe a method for assembling a database of relevant research relating to vegetated strips undertaken in boreo-temperate farming systems (arable, pasture, horticulture, orchards and viticulture). Methods: We will search 13 bibliographic databases, 1 search engine and 37 websites for stakeholder organisations using a predefined and tested search string that focuses on a comprehensive list of vegetated strip synonyms. Non-English language searches in Danish, Finnish, German, Spanish, and Swedish will also be undertaken using a web-based search engine. We will screen search results at title, abstract and full text levels, recording the number of studies deemed non-relevant (with reasons at full text). A systematic map database that displays the meta-data (i.e. descriptive summary information about settings and methods) of relevant studies will be produced following full text assessment. The systematic map database will be displayed as a web-based geographical information system (GIS). The nature and extent of the evidence base will be discussed

    Scientists' warning on climate change and insects

    Get PDF
    Climate warming is considered to be among the most serious of anthropogenic stresses to the environment, because it not only has direct effects on biodiversity, but it also exacerbates the harmful effects of other human-mediated threats. The associated consequences are potentially severe, particularly in terms of threats to species preservation, as well as in the preservation of an array of ecosystem services provided by biodiversity. Among the most affected groups of animals are insects—central components of many ecosystems—for which climate change has pervasive effects from individuals to communities. In this contribution to the scientists' warning series, we summarize the effect of the gradual global surface temperature increase on insects, in terms of physiology, behavior, phenology, distribution, and species interactions, as well as the effect of increased frequency and duration of extreme events such as hot and cold spells, fires, droughts, and floods on these parameters. We warn that, if no action is taken to better understand and reduce the action of climate change on insects, we will drastically reduce our ability to build a sustainable future based on healthy, functional ecosystems. We discuss perspectives on relevant ways to conserve insects in the face of climate change, and we offer several key recommendations on management approaches that can be adopted, on policies that should be pursued, and on the involvement of the general public in the protection effort
    • …
    corecore