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ABSTRACT

This paper describes and illustrates a novel method
of microarray data analysis that couples model-based
clustering and binary classification to form clusters
of ‘response-relevant’ genes; that is, genes that are
informative when discriminating between the different
values of the response. Predictions are subsequently made
using an appropriate statistical summary of each gene
cluster, which we call the ‘meta-covariate’ representation
of the cluster, in a probit regression model. We first
illustrate this method by analysing a leukaemia expression
dataset, before focusing closely on the meta-covariate
analysis of a renal gene expression dataset in a rat model
of salt-sensitive hypertension. We explore the biological
insights provided by our analysis of these data. In particular,
we identify a highly influential cluster of thirteen genes—
including three transcription factors (Arntl, Bhlhe41l and
Npasd—that is implicated as being protective against
hypertension in response to increased dietary sodium.
Functional and canonical pathway analysis of this cluster
using Ingenuity Pathway Analysis implicated transcriptional
activation and circadian rhythm signaling, respectively.
Although we illustrate our method using only expression
data, the method is applicable to any high-dimensional
datasets. Expression data are available at ArrayExpress
(accession number E-MEXP-2514) and code is available at

http://www.dcs.gla.ac.uk/inference/metacovariateanalysis/ .

INTRODUCTION

analysis of these data remain. Typically, the number of
variables (or probes) measured vastly outnumbers the numbe
of replicate experiments: over thirty thousand probes migh
be measured in only three or four samples, making good
predictive performance possible by chance, irrespective o
whether the data contain relevant patterns. In additiomyma
variables will exhibit similar patterns across the samples
we require methods that identify which of these correlation
are the result of genuine functional relationships andésr ¢
regulation and which are merely observed by chance. Taken
together, these features make microarray analysis statigt
demanding, prone to variability in model parameter estat
and ultimately susceptible to inaccurate prediction.

Our meta-covariate method is a novel approach to
analysing microarray data, which overcomes and, in the
case of correlated expression patterns, exploits thestitati
properties of gene expression data, with a view to improving
prediction and identifying biologically relevant struciin the
data [2]. It is, however, applicable tany high dimensional
dataset (including proteomics, sequencing and miRNA
datasets) where informative correlations exist between th
variables. Initially, theD probes are grouped int& clusters,
using gene expression similarity across fliesamples and a
standard Gaussian mixture model. Ahdimensional meta-
covariate vector is then generated from each cluster and
predictions are made by weighting these meta-covariatas in
probit regression model. We then take the novel step of using
the prediction performance to update the clustering siract
the meta-covariates and the regression weights. Thidiitera
procedure is repeated until convergence (Figure 1).

The approach of reducing microarray data dimensionality
by forming clusters (independent of predictions) and mgkin

Microarray experiments allow the simultaneous expressionsubsequent predictions using cluster summaries has been
measurements of tens of thousands of genes in a biologicaldopted previously by Hanczar et al. [3] and Park et al. [4]
sample and have been employed extensively to investigatgmongst others. Where our method improves upon existing
human disease since the early nineties [e.g., 1]. Despitgnethods is that inter-predictor correlations are coupled
almost two decades of research, challenges regarding thgith predictor-outcome correlations to inform the clubtgr
structure, the cluster summaries (meta-covariates) aad th
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The congenic strain SP.WKYGla2a (D2Rat13-D2Rat157)
was generated using a marker-assisted “speed” congenic

strategy [8] where a WKY (donor strain) segment was
— P introgressed into the SHRSP (recipient strain) genetic
e 4 "k background.
Microarray data analysis Affymetrix Rat 230-2
o Memoie Mo peromane Affymetrix GeneChip renal expression analysis was used
"”°;“e‘”” 4 * ‘5“'°I“'a‘e“ to identify differentially expressed probe sets (représgn
unigue gene or expressed sequence tag sequence on the

Affymetrix GeneChip) between male, 21-week old, age-

Figure 1. The meta-covariate method. Expression data are used to formmatched salt-loaded and non-treated SHRSP, SP.WKYGla2a,
clusters of probes (clustering is represented by fBe K matrix of and WKY rats. Whole kidneys (harvested between 10am and
tfﬁsponslibi'tigfss'g-n3"Sisnggntf)iorfrlz'kemeﬁgi‘l\t'%r;ast?ﬁl&; afreo g;";}'ﬁg ;;Oefln 12 noon and snap frozen in liquid nitrogen) were homogenized

ese Clus H H
(with regression coefficient®). The nFc)Jvelty of our metﬁod is highlighted in and tOta.I RNA eXtra.Cted from 3 rats from each strain by using
turquoise: the prediction performance is used to upga@, andw, thereby  the maxi RNeasy kit according to the manufacturers protocol
iteratively improving the cluster structure and the preditperformance. (Qiagen). Biotinylated amplified target cRNA was prepared
and hybridized to the Affymetrix Rat Rat230-2 gene chips
as described by Affymetrix. After hybridization, microayr
chips were washed, stained and scanned. The microarray data
were normalized in R using RMA [9]. To assess the statistical
significance of pairwise intergroup differences, Rank Bobsl
(RP) [10] was used, corrected for multiple testing usingsefa
discovery rate of 5% [11]. The microarray dataset has been
submitted to ArrayExpress (Accession Number E-MEXP-
2514).

regression weights (indicated by the turquoise arrow infeg

1). The advantages of our method are three-fold. Firstly,

the clustering component of the model identifies response

relevant structure in the data, aiding biological intetatien.

Secondly, the regression coefficients allow the identificedf

influential clusters: the greater the weight assigned tostet

in the regression model, the more ‘informative’ that cluste

is when discriminating between the outcomes of the respons% — . . .

variable. And finally, using the predictor-response catiehs uantitative Real-Time Polymerase Chain Reaction

to fine-tune the clustering structure in the model potelgtial Renal total RNA was extracted from 21-week-old salt loaded

improves prediction performance. and non-treated male rats using RNeasy kits (Qiagen)getieat

In this paper, we will first demonstrate how the meta- with DNase-Free RNase (Ambion), and accurately quantified.

covariate method works using the well known leukaemiagRT-PCR was performed using Tagman (Applied Biosystem,

dataset described by Golub et al. [5]. We will then employ UK) Actb(3-actin) labeled Vic, as a normalization control and

the method to analyse gene expression data in the rat kidnegither Arntl (Rn00577590m1), Npas2 (Rn01438224m1),

to investigate the genetics of salt-sensitive hypertensio Nfil3 (Rn01434874s1) and Bhlhe41l (Rn00591084m1)
labeled FAM. Arntl, Npas2 Nfil3 and Bhlhe4l were
normalised toActh, expressed relative to SHRSP (non salt

MATERIALS AND METHODS treated) in each sample using the comparatideACT)

L eukaemia data method.

In the Golub et al. [5] dataset, bone marrow or peripheral
blood samples were taken from 25 AML and 47 ALL
patients. The training data contain 38 samples, of which 11As described in the Introduction, the novelty of this
are AML and 27 are ALL samples. The test data containmethod lies in the coupling of the clustering and prediction
34 samples, of which 14 are AML and 20 are ALL. RNA components (as depicted by the turquoise arrow in Figure
extracted from these samples was tagged and subsequent). These components are coupled by optimising all
hybridized to a high density Affymetrix oligoneuclotide the parameters (i.e., the parameters pertainingbtoh
microarray (Hu6800/HuGeneFL). The expression data werecomponents) simultaneously, rather than optimising the
obtained from the Broad Institute Website and preprocesseglustering parameters before the prediction parametense,H

as recommended in Dudoit et al. [6] (see Supplementarywe have chosen a Gaussian mixture model as the clustering

Materials for details), leaving 3571 probes for analysis. model [12, Section 9.2] and probit regression [12, Section
4.3.5] as the prediction method. We optimise the parameters

Animal strains of these models using the Expectation-Maximisation (EM)
algorithm [12, Section 9.4], which finds the most likely
Inbred colonies of SHRSP and WKY have been maintained aparameter estimates in a probabilistic model by updatiamth
the University of Glasgow since 1991, as previously desctib over a number of iterations. Our model updates are derived
[7]. From weaning, all rats were maintained on normal ratby merging the standard EM updates for the clustering and
chow (rat and mouse No.1 maintenance diet, Special Dietegression parameters.
Services) and at 18 weeks of age rats were given a salt Intuitively, the meta-covariate model can be thought of as
challenge (1% NacCl in drinking water) for three weeks. follows: (A) all probes on the array are clustered into K

Description of method
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groups, and each group is then represented by some averatgmikaemia (ALL) was used initially to illustrate our method
of its membersyB) these clusters averages (which we call [2]. Our method was then applied to a novel dataset of renal
the ‘meta-covariates’) are then used to predict the regpbys gene expression data with a view to providing insight intt sa
assigning each meta-covariate a weight in a regressionimodesensitive hypertension. Throughout this section, clgsiah
(C) we update the cluster structure (step A) and the regressiobe represented as.) wheren gives the ID of that cluster
weights (step B) depending on how well the meta-covariatein the datasetD (D € {leuk,salt}) whereleuk denotes the
regression model predicts the response. It is also impidan  Golub et al. dataset andit denotes the hypertension dataset.
appreciate that this method can be used as an exploratdry too
as well as a prediction algorithm. Theleukaemia data analysis

The significant parameters in this model érer, 3, v and
w. w IS a vector, containing the weights assigned to eac
meta-covariate (and therefore each cluster) in the reigress
model. Each value inv indicates how much influence each
cluster has in determining the value of the response an
therefore how informative it is when discriminating betwee
different values of the response (in the hypertension dgtas
the response is salt-loaded or non-salt-loaded, while én th
leukaemia dataset, the response is AML or ALL). The other
four parameters are relevant to the clustering moélet a
matrix containing the meta-covariate representationshef t
clusters and: is a matrix that describes the variance within
each cluster in the model; i.@, andy), = diag (o, ""’UI%N)

Iteukaemia is a broad term to describe cancer of the blood or
one marrow. Haemopoiesis, the process of blood prodyction
is organised hierarchically with the haemopoietic sterhatel
&he apex. The first major lineage diversion is between mgleloi
and lymphoid progenitors. In acute myeloid leukaemia (AML)
there is a block to differentiation with a rapid accumulatio
of abnormally proliferating myeloid blasts. This process i
mirrored in acute lymphoid leukaemia (ALL), but in this case
the blasts are of lymphoid morphology [13, Chapter 12].

In 1999, Golub et al. published work in which previously
unseen samples could be classified according to their gene
expression profiles; using a weighted vote of 50 probes, they
successfully classified all but one of the samples in thesggst
are the mean and covariance of #& cluster.x is a vector  of 34 samples (14 AML and 20 ALL samples). This dataset
containing the proportion of probes in the dataset that arehas been subject to extensive analysis in the past decade
assigned to each cluster, which are the ‘mixing coefficlents and predictions made from these data are consistently of
7 is a matrix containing the ‘responsibilities’ that eachster  good quality, regardless of the approach taken: using aepar
k takes forexplainingeach probe; each elementpfcan be  Bayesian classification model, Bae and Mallick misclassifie
interpreted as the probability that a particular probe g0 two test samples [14]; Lee and Lee [15] used support vector
a particular cluster (the values for any probe will sumto 1). machines to analyse an extended multinomial version of the
To generate assignments, a probe is assigned to the claster &olub et al. dataset and achieved a misclassification rate of
which it has the highest probability of belonging. Usingtsuc Tibshirani et al. [16] used the nearest shrunken centraids a
‘soft’ clustering (rather than ‘hard’ clustering, wherecha  misclassified two samples; and using a hierarchical Bagesia
probe is assigned to a cluster with a probability of 1), aidsmodel, Lee et al. [17] misclassified only one sample.
the interpretation of the model. Although AML and ALL are both forms of leukaemia,

Our EM procedure iteratively updates the valuestofl,  they cause accumulation of different types of cell [5]. As
¥, v andw (and others, see Supplementary Materials) untilsych, there will be many differences between the two sets
the model converges. More specifically, given some numbeif samples in this dataset that are attributable to cell,type
of clusters K, the goal is to maximise the log joint distriobat  rather than the molecular pathology of the two diseases.
with respect to the parameters, ¢, X, v and w, until  These cellular differences may be responsible for the ease
the model converges. Here, the convergence criterion are a@ith which the AML and ALL samples are discriminated in
increase in the log joint distribution of0.00001 or some  the literature. It must also be noted that there are subtypes
maximum number of iterations. Note that the value of K must of AML and ALL [18]_|n the process of haemopoiesis,
be set before optimisation, necessitating a model sefestep  myeloid and lymphoid progenitor cells give rise to further
that identifies which K is best for a given dataset. cell |ineages, where Subtypes of AML and ALL describe

Full details of our method are given in the Supplementarycancers exhibiting variable levels of differentiation tes
Materials, Sections 1.2-1.3 and MATLAB code is available at mature myeloid and lymphoid cells—and that the Golub et al.

http://www.dcs.gla.ac.uk/inference/metacovariatéesis!. dataset pools all AML and ALL subtypes together. In addition
_ ' . to the heterogeneity inherent in the disease, the samples in
Mapping and Ingenuity Pathway Functional Analyses the dataset vary with respect to the age of the patient and

All probe to gene mappings: gene to pathway mappings andVith respect to sample type (e.g., both bone marrow aspirate
network analysis tools were taken from Ingenuity Pathway@"d Peripheral blood mononuclear samples are used). As
Analysis software (IPA, http:/Aww.ingenuity.com/) as of SUCh, we expect that any biology captured by our model
October 2009. Molecular interactions between genes werd/ould represent very ‘general’ characterisations of migelo
mapped to a common pathway using Pathway Explore@d lymphoid cells.

functi ithin | ity Path Analysis software. . . :
tnction within Ingenuity Fafhwaly Analysis sottware The meta-covariate analysis of the leukaemia data

The Golub data were pre-filtered as described by Dudoit et al.
RESULTS AND DISCUSSION [6]. In our representation, AML samples have been encoded
A well established leukaemia dataset containing exprassioas 1 and ALL samples have been encoded as 0; therefore,
data for acute myeloid leukaemia (AML) and acute lymphoid positively weighted clusters are predictive of AML samples
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(these clusters will be described as AML+) and negativelydescribes how well the current classification model matches

weighted clusters are predictive of ALL (such clusters wél
described as ALL+). A model selection step identifi§d=22

the response data, and a standard clustering component [12,
Section 9.2.2]. As the cluster size decreases, that isyas

as the best model using the criteria of minimum average tesbecomes more sparse (wheyg is the vector of clustering
error (the model selection step performed 1000 iteratidns oresponsibilities for clustek) , the model mismatch terms

the EM algorithm, wheré < K < 50).

The maximum a posteriori (MAP) [12, pp. 30] solution for
this model discriminates perfectly between AML and ALL
samples, in both the training and test set, providing exdden
that our meta-covariate model is able to make good predistio
and suggesting that the clusters formed are responsentlev
and, therefore, potentially biologically relevant.

Cluster morphologyThe meta-covariate model algorithm was

will dominate the calculation of;, as the standard clustering
component, dependent oy, will diminish. Conversely, as
the cluster becomes larger ang, becomes less sparse,
the standard mixture modelling component will dominate
the calculation. Furthermore, as the cluster becomes more
influential and the value ofjw;| increases, the model
mismatch term will dominate further. Therefore, the model
will tend to form smaller, influential, more variable cluste
and larger, less influential and less variable clustersetie

run to convergence—the criterion being a difference inautomatically inducing sparsity in the model.

the joint posterior of<0.0001 and a maximum of 5000
iterations—on the leukaemia data, partitioning the probes i

Capturing large-scale, biological functionalitfhe model is

22 clusters. These clusters and their associated regnessicapable of capturing large-scale biological functiowaitat is

coefficients {(v), dataset proportionm) and mean variance

of relevance to the response. As expected, the biology btu

(02, the variance in expression of cluster members, averagefY the most influential clusters in this dataset describes
over samples) are described in Table 1. There is a margindtnctions characteristic of myeloid and lymphoid cells.

trend for |wy| to decrease with cluster sizg£—0.37,p=

cleuk is the most influential cluster in the model

0.09). However, there is a significant correlation between thegenerated from the leukaemia data (Figure 2(a)). The

mean variance in the cluster and its influenpe=(.54,p=

0.01). This is perhaps contrary to expectation. It might be ALL samples. Gj

expression of the genes in this cluster is associated with
uk js enriched for elements in the

expected that the most influential clusters would identify “MIF regulation of innate immunity” pathway, due to

transcriptionally tight clusters of genes corresponding t
specific sub-functionality; however, the opposite is trie
more influential clusters are more variable.

This can be explained by considering héyy is calculated
(see Equation 4 in the Supplementary Material®). is

the inclusion of MIF and its cell surface receptor CD74
[19] in the cluster (Supplementary Figure 2). MIF is a
lymphokine, a signalling molecule expressed by lymphayte
(http://www.ncbi.nlm.nih.gov/gene/4282), which has iee
shown to play a role in T cell tumourigenesis [20] and

comprised of both a model mismatch component, whichlymphocyte proliferation [21, 22]. CD74 is expressed on

Table 1. The 22 clusters obtained by meta-covariate analysis of tHamia
data (clusters are ordered bys(w)). w is the regression coefficient of the
cluster,r is the size of the cluster (as a percentage of the whole djata3ds
the mean variance of the cluster.

2

Cluster  Probes

w T ag
10 62 -5.32 179102 7.34x10?
12 96 2.55 278102 6.69x10?
21 177 243 498102 3.94x10?
14 214 -230 5.9%102 2.10x10%
5 142 217 3.9&102 2.59x10?
19 37 -191 1.06102 4.88x10?
22 124 1.73 3.49102 9.13x10%
3 179 -1.71 5.02102 1.18x10%
4 190 -1.65 5.42102 2.37x10%
8 263 1.25 7.33102 1.31x10!
15 143  1.04 3.99102 2.39x10?
1 75 1.00 2.12102 1.92x10?
7 52 -0.85 1.4%102 2.68x101
16 339 -0.79 9.5%4102 2.99x10?
11 111 056 3.09102 6.57x10?
20 162 053 458102 1.72x10?
13 202 050 5.62102 1.42x10%
2 191 -0.30 5.3%102 2.61x10%
9 210 -0.27 5.78102 2.16x10%
18 265 -0.17 7.48102 1.45x10?
6 98 0.15 2.7%102 2.88x10%
17 239 -0.04 6.69102 1.12x10?

malignant B cells (a form of lymphoid cell), but is expressed
to a much lesser extent on non-malignant cell surfaces [23]
(Supplementary Figure 3).

Clg"F is the most influential AML+ cluster (Figure 2(b)).
The most over-represented IPA pathway in this cluster is
the “triggering receptor expression on myeloid cells 1”
(or TREM1) signalling pathway (Supplementary Figure 4).
TREML1 activation has various roles in both the adaptive and
innate immune response, but critically, it is only expresse
in myeloid cells (Supplementary Figure 5). This cluster
is also enriched for “acute myeloid leukaemia signalling”
proteins; in fact, the top five AML+ clusters {§@*, Cl*,

Cleuk, Cleuk and Cguk) are all enriched for this pathway
(Supplementary Figure 6). This IPA canonical pathway
describes the signalling pathways which, when disrupted by
abnormalities (e.g., mutations to genes and/or transonipt
factors), can lead to increased proliferation and apoptosi
resistance in AML. These two pathways are myeloid-specific,
describing processes that occur exclusively in myeloitscel

Clusters can also represent more specific, biological sub-
functionality The predictive ability of each cluster only exists
within the meta-covariate model. Although some clusters
may clearly discriminate between AML and ALL samples,
others may be good at predicting subtypes of either disease.
ALL samples can be further sub-classified as T or B cell
ALL. Cig** is an example of one of these ‘subtype specific’
clusters. It is ALL+, with a regression coefficient of -1.91.
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Figure 2. Expression, mean expression) (and 6, vectors for three clusters generated by the meta-covariateoghewhen analysing the leukaemia data.
Extended versions with sample IDs are available in Suppleamgfigures 14-16.

From the expression plot in Figure 2(c), it is clear that of adults worldwide and projected to affect almost 30% of
this cluster is important when classifying specifically Tlce adults within 15 years [24]. One half of hypertensive pdten
ALL samples: expression in these samples is visibly higher,are salt sensitive, exhibiting increased blood pressuth wi
while expression in the B cell ALL and AML samples increased dietary sodium [25]. Elucidating the genetics of
is similarly low. This cluster is enriched for several T hypertension would have far-reaching implications forbgilo
cell lymphocyte specific canonical pathways, including the health. Animal models are useful functional models allayvin
“Calcium-induced T lymphocyte apoptosis”; “ICOS-iICOSL” the genetic dissection of complex, polygenic disease; éte d
and “CD28 Signalling in T Helper Cells”; “cytotoxic T described here are derived from a rat model of salt-seasitiv
lymphocyte-mediated apoptosis of target cells” and “T cell hypertension [26].
receptor signalling” IPA canonical pathways (Supplemgnta The SHRSP, Wistar-Kyoto (WKY) and congenic
Figure 7). SP.WKYGla2a strains of rat are distinct with respect to
Sub-type specific clusters can arise in our model becausphenotype in response to salt, with the SHRSP demonstrating
complementary clusters, which are able to predict the otheincreased systolic blood pressure and circadian amplitude
subtype(s) within a class, can exist. An example of ain response to salt, the WKY being largely unaffected by
complementary cluster to llgstk is dﬁuk (Supplementary ~ salt, and the SP.WKYGla2a demonstrating an intermediate
Figure 8):; here, the cluster contains genes that are monégyhig increase in both systolic blood pressure and circadian
expressed in B cell ALL samples than T cell ALL and AML amplitude in response to salt [27, Supplementary Figure 9].

samples. Microarray experiments were conducted to measure renal
gene expression in male, age-matched, 21 week old salt-

Applying our meta-covariate method to novel renal, gene loaded and non-salt-loaded animals. The resulting datesset

expression data analysed using our meta-covariate method. Genes contained

. . . in influential clusters will be informative when discrimiiray

In the previous section, we illustrated the use of our metayepyeen salt-loaded samples and non-salt-loaded samples.
covariate method by applying it to a well-known leukaemia g\ thermore, identifying gene expression changes between
dataset. We observed that_ the influential cluster_s tend_t%P.WKYGIaZa and SHRSP will highlight chromosome 2
be smaller and more variable than the less influentialye,engent processes involved in blood pressure regulation
clusters and that the model is able to capture both large- The sample size (n=18) is small; as such, we used all
scale biological characteristics and small-scale, moeeip 5 ata to build the model, rather than making predictions
on a test set. However, here we can demonstrate the second
Ase of our method, by employing it as a valuable supervised
clustering tool to generate response-relevant clustetisirwi

the given dataset, rather than using it primarily to build
a classifier (as demonstrated in the previous section when
Essential hypertension (chronically elevated blood pregsgs ~ analysing the leukaemia data).

a genetically complex disease, currently affecting onetgua

model of salt-sensitive hypertension.

Thehypertension data analysis
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4,562 probes on the array were identified as significant This feature of our model is particularly useful in this
using the Wilcoxon rank-sum tesp€0.05). K was set to  dataset, where all of the 4562 probes are significantly
20, following 1000 iterations of the method for each value of correlated with the response. The induced sparsity allows
K where2 < K <50, and subsequent analysis using Bayesianidentification of the most relevant features, in a congested
Information Criterion (BIC); forK =20, BIC=85731. BIC is  dataset where all features are relevant by traditionavauiaite
a regularised model selection technique, which identifies t methods. Furthermore, there is no correlation between the
most likely values of the model parameters, whilst penadisi Wilcoxon p-value and regression coefficient in this dataset
unnecessary model complexity [12, Section 4.4.1]. Upon(p=—1.47x1073, p=9.21 x 10~1), indicating that the most
completion, the meta-covariate model successfully pamtd valuable predictors (as defined by the meta-covariate model
the dataset with respect to salt. would not be selected on the basis of p-value alone.

With a view to establishing (a) how sensitive our method
Cluster morphologyThe twenty clusters that are formed are 'S '© variation in the data and (b) how robust these clusters
described in Table 2. Here, there is an imbalance of pobijtive are, we performﬁd Lea:jvel One Out C(;?SS'V"’;:'dat'on (LOfOICV)
and negatively weighted clusters—12 negative to 8 positive—and compared the models generated from the LOOCV folds to
unlike in the leukaemia model (Table 1) where there Wereea.ch other and o the '.“Ode' generated from the full dataset
equal numbers of positively and negatively weighted chgste using two metrics—Adjusted Rand Index (ARI) [28] and

This model is dominated by heavily, negatively weighted ~clusted Mutual Information (AMI) [29]—both of which
. ) measure concordance between clustering structures, while
clusters: the three most influential clusters;4€ w=

accounting for chance. The results are very encouraging:
—46.76; C3', w=-9.59; Ci", w=-7.13) are all  despite the small sample size, clustering concordanceyis hi
negatively weighted (note also that these three clustergsee Supplementary Figures 10-11 and Supplementary Tables
have similar variance). This suggests the dominant biology1-2). The mean concordance between the clustering stasctur
captured by this model is reduced expression in the saltpf the LOOCV fold models and the clustering structure of
loaded animals. That is, the biology that contributes mostthe model built from the dataset in its entirety (i.e., the
significantly to the discrimination between the salt-lodded  clustering described in Table 2) is 0.96=0.011) and 0.96
non-salt-loaded samples is that of lower expression in thg;=0.0070) for the ARI and AMI metrics respectively (all
salt-loaded samples. _ ~values rounded to 2 s.f.). This convincingly demonstratas t

Cluster size is significantly inversely correlated with a similar clustering structure is observed across LOOCHSol
regression weight o(=—0.46, p=0.04) and significantly  and, therefore, that the method is insensitive to variaiion
correlated with average variancep=0.67, p<0.01).  the input data. This is particularly encouraging given tat
Therefore, as observed in the leukaemia dataset, the methqgitial motivation for this method was to avoid such seniyi
has generated both small, variable (with respect to membeywe can now progress with the analysis of these data, with
gene expression), influential clusters and large, tight,confidence in the clustering structure.
non-influential clusters.

An influential cluster of thirteen geneSi4! is the most
influential cluster: its regression coefficient is five tinteger

Table 2. The 20 clusters obtained by meta-covariate analysis of thelata than the Second, most mﬂl,'lentlal C!U,Ster'_ C_IaSSIf_Icatlon,g’ISI
(clusters are ordered mps(w)). w is the regression coefficient of the cluster, this cluster ‘?md Its regression coefficient in 'SOIat_'Omhss'n
7 is the size of the cluster (as a percentage of the whole dptageis the ~ ONly one misclassification (the SHRSP+salt animal, C3996)

mean variance of the cluster. using the decision boundary £ 0). Although we should be
cautious of reading too much into cluster performance in
Cluster ~ Probes w 7r o2 isolation, given that clusters are only relevant as parthef t
model as a whole, it is a useful indicator of how informative a
13 13 4676 27%10° 227x107 cluster is in the model.
8 7959 1'51‘103 2.26x 101 The negative regression coefficient indicates that theggene
5 14 -7.13  3.1410% 23310 Lo X :
3 70 427 154102 559%102 in this cluster are, largely, more highly expressed in the-no
15 301 -332 6.6%102 2.37x102 salt-loaded samples than the salt-loaded samples, aslEngvi
6 317 -3.08 6.96102 2.31x10? in the graph of the mean expression valug$ ifh Figure
14 284  -2.69 6.2310% 251x107 3. Comparing the mean expression values to @healues
2 408 265 8.95107 152x10? illustrates the effect of incorporating an outcome-specifi
16 320 202 718107 1.95¢107 component in the calculation @, the difference between
4 454 1.85 9'95103 1.58¢ 101 the non-salt-loaded and salt-loaded samples is exagdemte
19 28  -154 6.1810° 1.13x10 A
17 336 -1.44 729102 2.13x102 the graph o3 (Qk wherek=13) in Figure 3.
10 361 135 7.9%102 2.05x102 Note that the difference betwegrandd in the renal dataset
1 163 1.00 3.62102 3.07x10% is greater than in the leukaemia dataset (Figures 2(a)ad(t)
7 316  -0.88 6.9%10% 2.29x10? Supplementary Figure 8). This suggests that there is greate
11 231 082 5-01102 2-4ﬁxl0§ discriminative power in the unaltered leukaemia data timan i
20 % 080 196107 4.53<107 the unaltered hypertension data. This is not surprisingrgi
iz %g '8‘22 g'igigz ;.ggxloz the known heterogeneity in the leukaemia samples and the
-0. . .38x 10 . . . X .
18 248 010 545102 2.09x102 comparative homogeneity of the inbred rats. It is enconggi

that the model is able to use patterns that exist in the mean
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Figure4. The contents of qg” overlaid with the salt-loaded comparisons in the (a) WKY, (B)M8KYGla2a and (c) SHRSP animals. Green indicates significant
down-regulation and red indicates significant up-regafatn the salt dataset. RP fold change is indicated below emdfcule. Direct relationships are indicated

by a solid line. gRT-PCR of the four transcription factoreritified in G4 confirming significant differences in SP.WKYGla2a and WKY sa#ided animals
(filled) compared to age-matched animals not exposed to sahjdpr (d)Arntl, (e) Npas (f) Nfil3 and (g)Bhlhe41(*p <0.05, **p<0.001).
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Figure 3. Expression, mean expressign) (@nd 6, vectors for qa”( =

—46.76), generated by the meta-covariate method when analysing the
hypertension data. Extended version with sample IDs is giwen

Supplementary Figure 17.

mappings given in Supplementary Table 6). Most of the
genes are significantly differentially expressed betwden t
salt-loaded and non-salt-loaded datasets in both the WKY
and SP.WKYGla2a (Figures 4(a) and 4(b) respectively).
However, the same genes are not differentially expressed
when comparing the salt-loaded and non-salt-loaded SHRSP
animals (Figure 4(c)) giving rise to the hypothesis thantes

in expression levels of the genes infg@ are protective
against hypertension in response to an increase in dietary
sodium. These results are corroborated by a Rosetta Resolve
analysis (http://www.rosettabio.com/products/resglveata

not shown) and the differential expression of the four
transcription factorsArntl, Npas2 Nfil3 and Bhlhe4) have
been confirmed by gRT-PCR (Figures 4(d)-4(g) respectively)

Circadian rhythm genes are implicatelfleven of the thirteen
probes in this cluster were mapped to genes using IPA. A
canonical pathway analysis of these eleven genes shows that
the cluster is enriched for circadian rhythm signalling e&n
(Supplementary Figures 12-13). This is relevant as allethre
rat strains demonstrate circadian patterns of systoliolo
pressure: these nocturnal animals have a higher bloodyseess
during the night than during the day and this difference and
the circadian amplitude is exacerbated on salt-loadingpén t
SHRSP (Supplementary Figure 9).

gene expression data to build the model, but that it is alk® ab

to alter the cluster representation (i.e., ali¢rto find more

complex informative patterns.

Strain-specific expression of{?’f genesFigures 4(a)-4(c)

Identifying a transcriptional network within glt Also
shown in Figures 4(a)-4(c) are the relationships between
the genes in @“, as described in the Ingenuity Pathway
Knowledge Base. Of note are the four transcription factors,

show the results of a Rank Products (RP) analysis [10lthree of which, neuronal PAS domain protein 2 Mpas2
within each strain, between the salt-loaded and non-salt{also known asBhlhe9; aryl hydrocarbon receptor nuclear
loaded datasets (Supplementary Tables 3-5, chromosomganslocator-like oArntl (also known a8mallandBhlhe5;
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Figure 5. (@) and (b) the most
significant networks identified in
the salt-loaded/non-salt-loaded data,
across the SP.WKYGla2a and WKY
strains respectively. Red indicates
up-regulation in the salt-dataset
compared to no-salt treatment, green
indicates down-regulation in the
dataset, as defined by RP [10];
legend shown above.

microarray dataArntl, Npas2and Bhlhe41 (Figures 5(a)-
5(b), Supplementary Tables 7-8). To have arrived at a simila

network and, as seen in a previous section, are potentiallgonclusion both by way of IPA network analysis and by

protective against hypertension, being differentiallpr@ssed

our meta-covariate method is encouraging. Further, ouamet

on salt in the SP.WKYGla2a and WKY strains. These threecovariate method identifies a much smaller set of genes,
transcription factors are central components of the ciezad allowing more concise interpretation of the data.

clock (Supplementary Figure 12). Aryl hydrocarbon recepto
nuclear translocator-likeAfntl) forms a heterodimer with

Further investigation and validation experiments are
underway, with the priority being the elucidation of howshe

Clock and is required for E-box-dependent transactivationgenes are linked to chromosome 2 and how they are involved

activating the transcription of thBer genes from the E-box

in sodium homeostasis. In addition, a major focus will be to

elements in its promoter region [30, 31]. Protein produéts o investigate why the genes ini€! vary similarly with the

Per act together withCry proteins to inhibitPer transcription,

thus closing the autoregulatory feedback loop. It has been
shown that the basic helix-loop-helix transcription fasto

(Bhlhe4) can represLlockBmallkinduced transactivation
of the mousePerl promoter through direct protein-protein
interactions with Bmall and/or competition for E-box
elements. Disruption of the key molecular oscillatohsn(l,
Npas3d and autoregulatory feedback loopBh{he4l Per,
Dbp, Cry), have recently been shown to be involved in
hypertension [32] and salt sensitivity in both mice [33, 34]

and rats [35].

Identifying a significant transcriptional networkThe IPA

CONCLUSION

dataset,

response; this may be due to shared transcriptional régulat

In this paper we describe and illustrate a novel method of
microarray analysis using the Golub et al. [5] leukaemia
before applying the same analysis to a novel
dataset of renal gene expression data in rat models of salt
sensitive hypertension. It was demonstrated that the gifedi
performance of our meta-covariate method is competitive in

the Golub et al. dataset. Although we refrain from drawing
any additional conclusions from these data, beyond the

identification of general patterns, we would like to stréwsst t

network generation algorithm was used to form networks offurther analysis of these data could be informative, presid

genes known to be functionally related, as defined by thethe caveats with respect to the experimental design arerkept
Ingenuity Pathway Knowledge Base. This algorithm generate mind.
small (at most 35 genes), densely connected networks from Although we were not able to evaluate prediction

a set of ‘focus genes’;

IPA is able to fill in the gaps’ performance in an independent test set given the small size

with linker genes to maximise connectivity in the networks. of the hypertension dataset, the model generated from the

Constructing networks around the significantly differaftyi

training set was able to perfectly discriminate betweeir sal

expressed genes identified by RP [10] in the salt data, weéoaded and non-salt-loaded samples. It must also be noted,
can identify networks of functionally related genes that ar however, that it is perfectly valid to use the meta-covariat
method as a supervised clustering technique with a view
The same three transcriptional regulators that form theto identifying response-relevant gene clusters, as wek as

relevant to salt-loaded animals.

transcriptional network in

significant networks generated from the SP.WKYGlaga: (

g“ are present in the most classification model.
Both datasets demonstrated that the model tends to form

1x107%%) and WKY (p=1x10"%6) RP gene expression small, variable, influential clusters and larger, tightess
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influential clusters. This is particularly useful in a costgel, 14
homogeneous dataset, such as the hypertension dataset, whe
many, if not all, variables are significantly correlated twit

the response. The flexibility of the model was evident in

that discrimination patterns were identified in the meanegen 1s.

expression data where possible, but where these data were no
informative, complex patterns were identified by alteneti
representations of the clusters.

We are currently developing a fully Bayesian

implementation of this meta-covariate method—which 18.

will provide a range of clustering structures for a dataset
rather than a single clustering scheme—whilst carrying out
further biological validation of our findings.
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