1,562 research outputs found
Sandpiles with height restrictions
We study stochastic sandpile models with a height restriction in one and two
dimensions. A site can topple if it has a height of two, as in Manna's model,
but, in contrast to previously studied sandpiles, here the height (or number of
particles per site), cannot exceed two. This yields a considerable
simplification over the unrestricted case, in which the number of states per
site is unbounded. Two toppling rules are considered: in one, the particles are
redistributed independently, while the other involves some cooperativity. We
study the fixed-energy system (no input or loss of particles) using cluster
approximations and extensive simulations, and find that it exhibits a
continuous phase transition to an absorbing state at a critical value zeta_c of
the particle density. The critical exponents agree with those of the
unrestricted Manna sandpile.Comment: 10 pages, 14 figure
Relativistic Heavy--Ion Collisions in the Dynamical String--Parton Model
We develop and extend the dynamical string parton model. This model, which is
based on the salient features of QCD, uses classical Nambu-Got\=o strings with
the endpoints identified as partons, an invariant string breaking model of the
hadronization process, and interactions described as quark-quark interactions.
In this work, the original model is extended to include a phenomenological
quantization of the mass of the strings, an analytical technique for treating
the incident nucleons as a distribution of string configurations determined by
the experimentally measured structure function, the inclusion of the gluonic
content of the nucleon through the introduction of purely gluonic strings, and
the use of a hard parton-parton interaction taken from perturbative QCD
combined with a phenomenological soft interaction. The limited number of
parameters in the model are adjusted to and -- data. Utilizing
these parameters, the first calculations of the model for -- and
-- collisions are presented and found to be in reasonable agreement with
a broad set of data.Comment: 26 pages of text with 23 Postscript figures placed in tex
Activated Random Walkers: Facts, Conjectures and Challenges
We study a particle system with hopping (random walk) dynamics on the integer
lattice . The particles can exist in two states, active or
inactive (sleeping); only the former can hop. The dynamics conserves the number
of particles; there is no limit on the number of particles at a given site.
Isolated active particles fall asleep at rate , and then remain
asleep until joined by another particle at the same site. The state in which
all particles are inactive is absorbing. Whether activity continues at long
times depends on the relation between the particle density and the
sleeping rate . We discuss the general case, and then, for the
one-dimensional totally asymmetric case, study the phase transition between an
active phase (for sufficiently large particle densities and/or small )
and an absorbing one. We also present arguments regarding the asymptotic mean
hopping velocity in the active phase, the rate of fixation in the absorbing
phase, and survival of the infinite system at criticality. Using mean-field
theory and Monte Carlo simulation, we locate the phase boundary. The phase
transition appears to be continuous in both the symmetric and asymmetric
versions of the process, but the critical behavior is very different. The
former case is characterized by simple integer or rational values for critical
exponents (, for example), and the phase diagram is in accord with
the prediction of mean-field theory. We present evidence that the symmetric
version belongs to the universality class of conserved stochastic sandpiles,
also known as conserved directed percolation. Simulations also reveal an
interesting transient phenomenon of damped oscillations in the activity
density
Critical behavior of a one-dimensional fixed-energy stochastic sandpile
We study a one-dimensional fixed-energy version (that is, with no input or
loss of particles), of Manna's stochastic sandpile model. The system has a
continuous transition to an absorbing state at a critical value of
the particle density. Critical exponents are obtained from extensive
simulations, which treat both stationary and transient properties. In contrast
with other one-dimensional sandpiles, the model appears to exhibit finite-size
scaling, though anomalies exist in the scaling of relaxation times and in the
approach to the stationary state. The latter appear to depend strongly on the
nature of the initial configuration. The critical exponents differ from those
expected at a linear interface depinning transition in a medium with point
disorder, and from those of directed percolation.Comment: 15 pages, 11 figure
Fertility, Living Arrangements, Care and Mobility
There are four main interconnecting themes around which the contributions in this book are based. This introductory chapter aims to establish the broad context for the chapters that follow by discussing each of the themes. It does so by setting these themes within the overarching demographic challenge of the twenty-first century â demographic ageing. Each chapter is introduced in the context of the specific theme to which it primarily relates and there is a summary of the data sets used by the contributors to illustrate the wide range of cross-sectional and longitudinal data analysed
Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab
We present measurements of the differential cross section and Lambda recoil
polarization for the gamma p to K+ Lambda reaction made using the CLAS detector
at Jefferson Lab. These measurements cover the center-of-mass energy range from
1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles.
Independent analyses were performed using the K+ p pi- and K+ p (missing pi -)
final-state topologies; results from these analyses were found to exhibit good
agreement. These differential cross section measurements show excellent
agreement with previous CLAS and LEPS results and offer increased precision and
a 300 MeV increase in energy coverage. The recoil polarization data agree well
with previous results and offer a large increase in precision and a 500 MeV
extension in energy range. The increased center-of-mass energy range that these
data represent will allow for independent study of non-resonant K+ Lambda
photoproduction mechanisms at all production angles.Comment: 22 pages, 16 figure
Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments
We report on the measurement of inclusive electron scattering off a carbon
target performed with CLAS at Jefferson Laboratory. A combination of three
different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an
invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum
transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous
measurements of the inclusive electron scattering off proton and deuteron,
which cover a similar continuous two-dimensional region of Q2 and Bjorken
variable x, permit the study of nuclear modifications of the nucleon structure.
By using these, as well as other world data, we evaluated the F2 structure
function and its moments. Using an OPE-based twist expansion, we studied the
Q2-evolution of the moments, obtaining a separation of the leading-twist and
the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist
contributions to the F2 moments exhibits the well known EMC effect, compatible
with that discovered previously in x-space. The total higher-twist term in the
carbon nucleus appears, although with large systematic uncertainites, to be
smaller with respect to the deuteron case for n<7, suggesting partial parton
deconfinement in nuclear matter. We speculate that the spatial extension of the
nucleon is changed when it is immersed in the nuclear medium.Comment: 37 pages, 15 figure
First measurement of direct photoproduction on the proton
We report on the results of the first measurement of exclusive
meson photoproduction on protons for GeV and GeV. Data were collected with the CLAS detector at the Thomas
Jefferson National Accelerator Facility. The resonance was detected via its
decay in the channel by performing a partial wave analysis of the
reaction . Clear evidence of the meson
was found in the interference between and waves at GeV. The -wave differential cross section integrated in the mass range of
the was found to be a factor of 50 smaller than the cross section
for the meson. This is the first time the meson has been
measured in a photoproduction experiment
- âŠ