1,562 research outputs found

    Sandpiles with height restrictions

    Full text link
    We study stochastic sandpile models with a height restriction in one and two dimensions. A site can topple if it has a height of two, as in Manna's model, but, in contrast to previously studied sandpiles, here the height (or number of particles per site), cannot exceed two. This yields a considerable simplification over the unrestricted case, in which the number of states per site is unbounded. Two toppling rules are considered: in one, the particles are redistributed independently, while the other involves some cooperativity. We study the fixed-energy system (no input or loss of particles) using cluster approximations and extensive simulations, and find that it exhibits a continuous phase transition to an absorbing state at a critical value zeta_c of the particle density. The critical exponents agree with those of the unrestricted Manna sandpile.Comment: 10 pages, 14 figure

    Relativistic Heavy--Ion Collisions in the Dynamical String--Parton Model

    Get PDF
    We develop and extend the dynamical string parton model. This model, which is based on the salient features of QCD, uses classical Nambu-Got\=o strings with the endpoints identified as partons, an invariant string breaking model of the hadronization process, and interactions described as quark-quark interactions. In this work, the original model is extended to include a phenomenological quantization of the mass of the strings, an analytical technique for treating the incident nucleons as a distribution of string configurations determined by the experimentally measured structure function, the inclusion of the gluonic content of the nucleon through the introduction of purely gluonic strings, and the use of a hard parton-parton interaction taken from perturbative QCD combined with a phenomenological soft interaction. The limited number of parameters in the model are adjusted to e+e−e^+e^- and pp --pp data. Utilizing these parameters, the first calculations of the model for pp --AA and AA--AA collisions are presented and found to be in reasonable agreement with a broad set of data.Comment: 26 pages of text with 23 Postscript figures placed in tex

    Activated Random Walkers: Facts, Conjectures and Challenges

    Get PDF
    We study a particle system with hopping (random walk) dynamics on the integer lattice Zd\mathbb Z^d. The particles can exist in two states, active or inactive (sleeping); only the former can hop. The dynamics conserves the number of particles; there is no limit on the number of particles at a given site. Isolated active particles fall asleep at rate λ>0\lambda > 0, and then remain asleep until joined by another particle at the same site. The state in which all particles are inactive is absorbing. Whether activity continues at long times depends on the relation between the particle density ζ\zeta and the sleeping rate λ\lambda. We discuss the general case, and then, for the one-dimensional totally asymmetric case, study the phase transition between an active phase (for sufficiently large particle densities and/or small λ\lambda) and an absorbing one. We also present arguments regarding the asymptotic mean hopping velocity in the active phase, the rate of fixation in the absorbing phase, and survival of the infinite system at criticality. Using mean-field theory and Monte Carlo simulation, we locate the phase boundary. The phase transition appears to be continuous in both the symmetric and asymmetric versions of the process, but the critical behavior is very different. The former case is characterized by simple integer or rational values for critical exponents (ÎČ=1\beta = 1, for example), and the phase diagram is in accord with the prediction of mean-field theory. We present evidence that the symmetric version belongs to the universality class of conserved stochastic sandpiles, also known as conserved directed percolation. Simulations also reveal an interesting transient phenomenon of damped oscillations in the activity density

    Critical behavior of a one-dimensional fixed-energy stochastic sandpile

    Get PDF
    We study a one-dimensional fixed-energy version (that is, with no input or loss of particles), of Manna's stochastic sandpile model. The system has a continuous transition to an absorbing state at a critical value ζc\zeta_c of the particle density. Critical exponents are obtained from extensive simulations, which treat both stationary and transient properties. In contrast with other one-dimensional sandpiles, the model appears to exhibit finite-size scaling, though anomalies exist in the scaling of relaxation times and in the approach to the stationary state. The latter appear to depend strongly on the nature of the initial configuration. The critical exponents differ from those expected at a linear interface depinning transition in a medium with point disorder, and from those of directed percolation.Comment: 15 pages, 11 figure

    Fertility, Living Arrangements, Care and Mobility

    Get PDF
    There are four main interconnecting themes around which the contributions in this book are based. This introductory chapter aims to establish the broad context for the chapters that follow by discussing each of the themes. It does so by setting these themes within the overarching demographic challenge of the twenty-first century – demographic ageing. Each chapter is introduced in the context of the specific theme to which it primarily relates and there is a summary of the data sets used by the contributors to illustrate the wide range of cross-sectional and longitudinal data analysed

    Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab

    Full text link
    We present measurements of the differential cross section and Lambda recoil polarization for the gamma p to K+ Lambda reaction made using the CLAS detector at Jefferson Lab. These measurements cover the center-of-mass energy range from 1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles. Independent analyses were performed using the K+ p pi- and K+ p (missing pi -) final-state topologies; results from these analyses were found to exhibit good agreement. These differential cross section measurements show excellent agreement with previous CLAS and LEPS results and offer increased precision and a 300 MeV increase in energy coverage. The recoil polarization data agree well with previous results and offer a large increase in precision and a 500 MeV extension in energy range. The increased center-of-mass energy range that these data represent will allow for independent study of non-resonant K+ Lambda photoproduction mechanisms at all production angles.Comment: 22 pages, 16 figure

    Measurement of the Nucleon Structure Function F2 in the Nuclear Medium and Evaluation of its Moments

    Full text link
    We report on the measurement of inclusive electron scattering off a carbon target performed with CLAS at Jefferson Laboratory. A combination of three different beam energies 1.161, 2.261 and 4.461 GeV allowed us to reach an invariant mass of the final-state hadronic system W~2.4 GeV with four-momentum transfers Q2 ranging from 0.2 to 5 GeV2. These data, together with previous measurements of the inclusive electron scattering off proton and deuteron, which cover a similar continuous two-dimensional region of Q2 and Bjorken variable x, permit the study of nuclear modifications of the nucleon structure. By using these, as well as other world data, we evaluated the F2 structure function and its moments. Using an OPE-based twist expansion, we studied the Q2-evolution of the moments, obtaining a separation of the leading-twist and the total higher-twist terms. The carbon-to-deuteron ratio of the leading-twist contributions to the F2 moments exhibits the well known EMC effect, compatible with that discovered previously in x-space. The total higher-twist term in the carbon nucleus appears, although with large systematic uncertainites, to be smaller with respect to the deuteron case for n<7, suggesting partial parton deconfinement in nuclear matter. We speculate that the spatial extension of the nucleon is changed when it is immersed in the nuclear medium.Comment: 37 pages, 15 figure

    First measurement of direct f0(980)f_0(980) photoproduction on the proton

    Get PDF
    We report on the results of the first measurement of exclusive f0(980)f_0(980) meson photoproduction on protons for EÎł=3.0−3.8E_\gamma=3.0 - 3.8 GeV and −t=0.4−1.0-t = 0.4-1.0 GeV2^2. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. The resonance was detected via its decay in the π+π−\pi^+ \pi^- channel by performing a partial wave analysis of the reaction Îłp→pπ+π−\gamma p \to p \pi^+ \pi^-. Clear evidence of the f0(980)f_0(980) meson was found in the interference between PP and SS waves at Mπ+π−∌1M_{\pi^+ \pi^-}\sim 1 GeV. The SS-wave differential cross section integrated in the mass range of the f0(980)f_0(980) was found to be a factor of 50 smaller than the cross section for the ρ\rho meson. This is the first time the f0(980)f_0(980) meson has been measured in a photoproduction experiment
    • 

    corecore