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1. Introduction

The study of the ideals in a regular local ring, m) of dimension 2 has a long and
important tradition dating back to the fundamtal work of Zariski [ZS]. More recent con-
tributions are due to several authors including Cutkosky, Huneke, Lipman, Rees, Sally, and
Teissier among others, see [C1,C2,H,HS,L,LT,R]. One of the main result in this setting is
the unique factorization theorem for complete (i.e., integrally closed) ideals proved orig-
inally by Zariski [ZS, Theorem 3, Appendix 5]. It asserts that any complete ideal can be
factorized as a product of simple complete ideals in a unique way (up to the order of the
factors). By definition, an ideal is simple if it cannot be written as a product of two proper
ideals. Another important property of a complete idead that its reduction number is 1
which in turns implies that the associated graded ring&y is Cohen—Macaulay and its
Hilbert series is well-understood; this is due to Lipman and Teissier [LT], see also [HS].

The class of contracted ideals plays an important role in the original work of Zariski
as well as in the work of Huneke [H]. An ideélof R is contracted iff = RN IR[m/x]
for somex € m \ m?. Any complete ideal is contracted but not the other way round. The
associated graded ring,gR) of a contracted idedl need not be Cohen—Macaulay and its
Hilbert series can be very complicated.
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Our goalis to study depth, Hilbert function, and defining equations of the various graded
rings (Rees algebra, associated graded ring and fiber cone) of homogengoinsary
contracted ideals in the polynomial rily= k[x, y] over an algebraically closed fiekdof
characteristic 0.

In Section 3 we present several equivalerdreltterizations ofantracted ideals in the
graded and local case. The main result o$ théction is Theorem 3.12. It asserts that the
depth of gy (R) is equal to the minimum of depthgg, (Sy), whereS = R[m/x], I’ isthe
transform ofl and N varies in the set of maximal ideals Sfcontainingl’.

An important invariant of a contracted ide&abf order (i.e., initial degreej is the so-
called characteristic form. In the graded setting the characteristic forhioGCD(1,),
wherel; denotes the homogeneous component of degree/. The more general con-
tracted ideals are those with a square-free (i@mnltiple factors) chracteristic form. On
the other hand, the more special contractezdld are those whose characteristic form is a
power of a linear form; these ideals are the so-called lex-segment ideals. The lex-segment
ideals are in bijective correspondence with the Hilbert functions (in the graded sense) of
graded ideals so that to specify a lex-segment ideal is equivalent to specify a Hilbert func-
tion.

In the graded setting Zariski's factorization theorem for contracted ideals ([ZS, Theo-
rem 1, Appendix 5] or Theorem 3.8) says that any contracted ilean be written as
a product of lex-segment ideals=m¢Lj --- Ly. Here eachl; is a lex-segment mono-
mial ideal with respect to an appropriate system of coordingtes which depends oh
Furthermorel; has exactly one generator in its initial degree which is a powey.of

As a consequence of Theorem 3.12 we have that the depth @®)gis equal to the
minimum of the depth of gr(R) (see Corollary 3.14). We can also express the Hilbert
series ofl in terms of the Hilbert series of thig;'s and of the characteristic form a@f(see
Proposition 3.10).

For a contracted ideal with a square-free characteristic form we show in Theorem 3.17
that the Rees algebfa(1), the associated graded ring,gR) and the fiber cong(7) are
all Cohen—Macaulay with expected defininguations in the sense of [Vas] and [MU].
FurthermoreR (1) is normal, the fiber cong(7) is reduced and we determine explicitly
the Hilbert function of gf(R).

Section 3 ends with a statement and a conjecture on the coefficients bfvibetor
of a contracted ideal. Denote liy (1) the ith coefficient of theh-vector of I and by
w(I) the minimal number of generators 6f We show that for any contracted (or mono-
mial) ideall one hasi1(1) > (u(I) + D (I)/2 (Proposition 3.18) and we conjecture that
ha(I) = 0.

Sections 4 and 5 are devoted to the study of the lex-segment ideals. This class is
important since, as we said above, information about the associated graded ring of a con-
tracted ideall can be derived from information about the associated graded rings of the
lex-segment ideals appearing imet Zariski’s factorization off. Another motivation for
studying the associated graded rings of lex-segmentideals comes from Section 2. There itis
proved that if/ is any ideal and i(V) is its initial ideal with respect to some term order then
H;(n) < Hin(r)(n) for all n provided depth gk ;) (R) > 0. In two variables initial ideals in
generic coordinates are lex-segment ideals. We detect several classes of lex-segment ideals
for which the associated graded ring isl@n—Macaulay or at least has positive depth.
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In particular, consider the lex-segment idéahssociated with the Hilbert function of an
ideal generated by generic fornfs, . .., fi; equivalently, seL =in((f1, ..., fs)), where
the formsf; are generic and in generic coordinates. We show that deptiRyr- O (see
Theorem 5.3). Furthermore giR) is Cohen—Macaulay if the formg have all the same
degree. In Section 6 we describe the defining equations of the Rees algebra of various
classes of lex-segment ideals.

Some of the results and the examples presgtin this paper have been inspired and
suggested by computations performed by the computer algebra system CoCoA [Co]. In
particular, we have made extensive use of the local algebra package.

2. Initial ideals and associated graded rings

Let R be a regular local ring of dimensiogh, with maximal idealm and residue
field k, or, alternatively, letR = k[x1, ..., x4] be a polynomial ring over a field, and
m = (x1,...,x4). Throughout the paper we assume that R/m is algebraically closed
of characteristic 0. Moreover, I€tbe anm-primary ideal. For every integer, the length
A(R/I"TY) of R/I™1 as R-module is finite. Fom > 0, A(R/1"Y) is a polynomial
HP; (n) of degreed in n. The polynomial HRP(n) is called the Hilbert—Samuel polyno-
mial of I and one has

1
HP; (n) = %nd + lower degree terms

In particular,e(7) is the ordinary multiplicity of the associated graded ring(g to ,

g (R = 1" /1"t
n=>0
The Hilbert function HE(n) of I is defined as
HF; (n) = A(1" /1Y)

and it is by definition the Hilbert function of g¢R). The Hilbert series of is

HS(2) = ) HF (2"

n=>0
It is well known that the Hilbert series is of the form

ho(l) +hi(Dz 4+ -+ hy(DZ

HS; (2) = 1—o7

’

with h; (1) € Z for everyi, ho(I) = A(R/1) and)_}_qhi (1) = e(]).

In the local case, most important tools for studying the associated graded ring are mini-
mal reductions and superficial elements. Those tools are not available in the non-local case,
so we need to pass to the localization.
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Lemma 2.1. Let S be a flat extension of a rin@ and let/ C R be an ideal. Suppose that
S/1S ~ R/I as R-modules. Then

gr;(R) = gr;5(S).

Proof. It is enough to prove that /1”1 ~ ["§/1"t1§ as R-modules. Since is a flat
extension ofR, one has

1"S/I"S~1"S @ S/IS~1"Qr S®s S/IS>~1"®r S/IS
~1"Qg R/I~1"/1"1,

and the multiplicative structure is the samez

Remark 2.2. We apply the above lemma to our setting. The localizatgnis a flat ex-
tension ofR andR/I >~ Ry, /In. By the above lemma, we get

gr;(R) =~ gr; (Rm).
In particular, one has Hf; (n) = HF; (n) and hence H{, (z) = HS; (z).

We are interested in studying the behaviour of; B under Grébner deformation.
In the following we denote by an m-primary ideal of R = k[x1, ..., xqg] with m =
(x1,...,xq9). We fix a term order orR and consider the initial ideal (i) of /. Recall
thatA(R/I) = A(R/in(1)).

We want to compare Hfn) and Hkn ;) (n). First note that

e(I) < e(in(l)).

This inequality follows easily from the fact that the multiplicities can be read from the
leading coefficients of the Hilbert—-Samuel polynomials/adnd of in7). In fact, since
in(1)" Cin(I™), we have

A(R/I™) =A(R/in(I")) < A(R/In(D)") (1)

and hence fon > 0 we get the required inequality on the multiplicities. Notice that in
[DTVVW, 4.3] equality has been characterized.

As a consequence of the next lemma one has that the same inequality holds for the
Hilbert function asymptotically, in a more geral setting. Moreover, under some assump-
tion, the inequality holds from the beginning.

Lemma 2.3. Let J be anm-primary ideal inR = k[x1, ..., xq4] and letF = {F,},>0 be a
filtration of ideals, such thaf 7,, € F,+1 andJ" C F, for everyn > 0. Then

(1) AM(Fn/Fnsr) < AJ"/ I forn > 0;
(2) if depthgr (R) > O, theni(F, /Fnt1) < A(J"/J"HY) for everyn > 0.
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Proof. (1) Since for every: > 0 we haveJ” C F,, itis equivalent to prove
MFn)I") < M Fuga/T"H).

By Remark 2.2, and since(F,,/ Fr+1) = M(FnRm/Fn+1Rm), we may transfer the prob-
lem to the local ringR.y,, identifyingJ with J R, andF,, with 7, R,,. Leta be a superficial
element forJ and consider the following exact sequence induced by the multiplication
by a:

0— [(J"™L1a) N F)/I" = Fuf " S Fuia) " — FuiafaFy+ 1L =0,

Sincea is superficial and regular, one hag*1: ¢ = J” for n > 0, and this proves (1).
(2) If depth g (R) > 0, thena € J/J? is regular (see [HM1, 2.1]) and"+1 :qa = J"
for everyn. This forces the required inequality and concludes the proaof.

As a consequence of the above lemma one has:

Theorem 2.4. Fix any term order onRR = k[x1, ..., x4], and letl be anm-primary ideal
in R. The following facts hold

(1) HF;(n) < HFjn(7y(n) for n > 0;
(2) if depthgfy(R) > O, thenHF; (n) < HFin(s)(n) for everyn > 0.

Proof. SinceA(R/I") = A(R/in(I™)) for everyn, one has
HF; (n) = A(1"/1" ) = A(in(1")/in(1"T1)).

Now the results follow by applying Lemma 2.3 with=in(1) andF,, = in(/"). Note that
part (1) can also be proved directly from Eq. (12

A lex-segment ideal is a monomial ideal such that whenevet, m are monomials
of the same degree withh > m in the lexicographical order themn € L impliesn € L.
Macaulay’s theorem on Hilbert function implies that for every homogeneous idbalre
is a unigue lex-segment idealwith dim I; = dim L, for all s. We will denote this ideal
by Lex(7). Note however that LeX) depends only on the Hilbert function 6f

The following examples show that the conclusion of part (2) in Theorem 2.4 does not
hold if the depth of g, (R) is O.

Example2.5. (a) ConsideR = Q[x, y] equipped with the Iexicographic order with> y.
If I =(x° x%2 x2y°(x + y), xy8, y19), theninl) = (2, x%y2, x3y®, x2y7, xy8 y19).In
this case the associated graded ring {@)rhas depth zero and one has

32+ 14z + 622 — 278 32+ 16z + 472 — 278
: . HSh)(2) = -
1-2) 1-2)

HS] (Z) =
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Thuse(I) = e(in(1)), and HR (n) = HFiny(n) for n > 3, but HR(2) = 130> 128=
HFin)(2). Note that ir{7) is a lex-segment ideal, thus in particular, it is also the generic
initial ideal of 1.

(b) Let

I= (xg, xy,x8y3 x5y x4y12 x3y13 x2) M ylt, ylg) C Qlx, yl.
Its generic initial ideal is the lex-segment ideal

55 .4.12 313 2 14

7.2 17 |1
L=(x8,xy,x6y3,xy,xy , XY L, XY L, XYy ,yg).

Notice that! is contracted, since it has the same number of generatdis(esntracted
ideals will be defined and studied in Section B this case as well, depth giR) = 0, and
the conclusion of Theorem 2.4(2) fails. In fact, one has

85+ 427 + 1072 — 328 85+ 43; + 772 — 3
and H = ,
1-2)? 2@ (1-2)2

thus HF (2) = 349> 348= HF,(2).

HS[(Z) =

By Theorem 2.4, irk[x, y], one has
A1/ 1"TY) < a(Lex(D)"/ Lex(I)"™™)  for everyn 0.
Such inequality does not hold in 3 or more variables, see the next example.

Example 2.6. Let I = (x?, y2, xy, xz2, yz2,z% C Q[x, y, z]. One has Le) = (xz, xy,
x2,yz%, y%z,y%, 7%, and

8+ 8z 847z

HSI(Z) = m: HSLex(I)(Z) = m

Thus HF (n) > HFLex(s)(n) for everyn > 1, and als@ (1) > e(Lex(1)).

In the last part of the section we restrict ourselves to the case of dimension two, and we

collect some Cohen—Macaulayness criteriatfar associated graded ring. We recall the
following important result.
Proposition 2.7 [HM, Theorem A, Proposition 2.61.et I be anm-primary ideal of a
regular local ring (R, m) of dimension two and a minimal reduction of. Thengr; (R)
is Cohen—Macaulay if and only i = J 1.

It follows from [LT, 5.5] and [HS, 3.1] that:

Proposition 2.8. Let I be anm-primary ideal in a regular local ring(R, m) of dimension
two. If I is integrally closed, thegr; (R) is Cohen—Macaulay.
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Proposition 2.7 does not have a corresponding version in the graded case since minimal
reductions need not exist in that setting. But the next corollary holds both in the graded and
in the local setting.

Proposition 2.9. Let I be anm-primary ideal in a regular ringR of dimension two. Then
gr; (R) is Cohen—Macaulay if and only if

M@=

Proof. Thisis a simple consequence of the fact that8) ~ gr; (Rw). In fact, by Propo-
sition 2.7, g§_(Rm) is Cohen—Macaulay if and only W]% = J I, for some reductiory
of I1,. SinceRy, is a local Cohen—Macaulay ring, this is equivalent to

HS1 (0 = == =

(see, for example, [GR, 2.5]). The conclusion follows by Remark 22.

We will apply the above criteria for provinthe Cohen—Macaulayness of the associated
graded rings of certain classes of monomial ideals.

Let R = k[x, y] and denote byn the ideal(x, y). There are many ways of encoding an

m-primary monomial ideal. Among them we choose the following. o
Setd =min{j: x/ € I}. Thenfori =0, ...,d we setg; (1) = min{j: x?~'y/ e I} and

a(l) = (ao(]),a1(l), ..., aqs(D)).
The sequence(]) is said to be the column sequence/oBYy the very definition we have

thatag(l) =0 and 1< a1(1) < ax(l) < --- < aq(I). Conversely, any sequence satisfying
these conditions corresponds to a monomial ideal. For example,

I = (xs, xy3, y5) «~—— a(l)=(0,3,3,5),
1= (x4, x3y, x2y4, xy7, y9) «~— a(l)=(0,1,4,7,9).

It is easy to see that

AR/D) = |a(D)] =Za,~(l).

1

Note also that the minimal generatorsioéire the monomials?—y% ) with a; (1) <
aii1(l) ori =d.
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Remark 2.10. In two variables, then-primary lex-segment ideals correspond exactly to
strictly increasing column sgiences. In other words, amy-primary lex-segment idedl
can be written as

L= (xd, xd7ya o oyt yad),

where 0= ag < a1 < --- < aq. In particular, the minimal number of generatorsiofs

exactly one more than the initial degree. Ideals with this property are called contracted,
see Section 3. Furthermore, in characteristic O, the lex-segment ideals are exactly the Borel
fixed ideals and this implies that the generic initial ideakl @jrof 7 is equal to Lex/).

The b-sequence (or differences sequence) @ denoted by (1), ..., bs(I) and de-
fined as

bi(I)=a;(I) —a;j_1(I).

We will usea; for a; (1) andb; for b; (1) if there is no confusion.
If I andJ are monomiam-primary ideals, then the column sequence of the profliict
is given by

ai(I1J)y=minfa;(I) +ar(J): j+k=i}.
In particular, the column sequenceldfis given by
ai(I") =min{aj, (D + - +a;, (D ji+--+ ju=i}.
Example2.11. Let I be a monomial ideal with-sequenceés, ..., b,.
(a) Assumeb1 < by < --- < bg. Then it is easy to see that for evetye N one has

ai(I"y = —ryag(I) +rag11(I), wherei = gn + r with 0 < r < n. Summing up,
we havela(I")| = n?|a(l)| — (5)aq(I). It follows that

MR/ + (AMR/I) —ayq(I))z
(1-12)2 ’

Note that by [E, Example 4.22] the ideals integrally closed.

HS; (2) =

(b) Assumeb1 > by > --- > by. Then it is easy to see that for evetye N one has
ai(I'y = qaq(I) + a-(I), wherei = gd + r with 0 < r < d. Summing up, we have
la(I™)| = nla(I)| + (3)daq(1). It follows that

MR/ + (daqg(I) — M(R/1))z

HS[(Z) = (1_ Z)2

Moreover, the ideal = (x9, y%) is a minimal reduction of, andI2 = J 1.

In both cases the associated graded ring isf Cohen—Macaulay by 2.9.
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3. Contracted ideals

Let R be either a polynomial ring over a field or a regular local ring. Assume that
dimR = 2. Denote bym the (homogeneous) maximal ideal Bf Most of the results of
this section hold for any infinite base field. But, to avoid endless repetitions, we agsume
is algebraically closed of characteristic O.

Let I C R be an ideal, homogeneous in the graded case. The ideals we are going to
study were introduced by Zariski [ZS]:

Definition 3.1. An ideal I C R is said to be contracted if there exigts m \ m? such that
I =I1SNR, whereS = R[m/£].

From now on we assume thats m-primary. For any non-zer@in m, the ordew(a) of
a is them-adic valuation ofz, that is, the greatest integersuch that: € m”. If o(a) =7,
then we denote by* the initial form ofa in gr,,(A), thatisa* =a € m’/m’ 1. Denote
by w(I) the minimum number of generators bfand byo(I) the order off, that is, the
largesth such thatr € m”. In the graded case(I) is simply the least degree of non-zero
elements in/. In the local case, if* is the homogeneous ideal of gfR) generated by
the initial forms of the elements df theno(I) is the least degree of an elementl/in As
in [ZS], we callcharacteristic formthe GCD of the elements of degre€/) in I*. In the
graded case the characteristic form istjthe GCD of the elements of degt@d) in 1.

By the Hilbert—Burch theoreny, is generated by the maximal minors ofra— 1) x ¢
matrix, sayX, wheret = u(I). It follows thatu (1) < o(I) + 1.

Remark 3.2. In the graded setting, i1 < --- < g; are the degrees of the generatord of
andzy < --- < z;—1 the degrees of the syzygies, then tlieentry of X has degree; — g;.
Here we use the convention that 0 has any degree. The n@tnxu;; = z; — g;, is called
the degree matrix of. It is easy to see that; must be positive for all, j with j —i <1

and thabo(1) = Y "t u 1.
We have the following proposition.
Proposition 3.3. The following conditions are equivalent
(1) I is contracted,
(2) there existy € m \ m? such that/ : (¢) = I : m,

() u()=o(l)+1.

Furthermore, in the graded cas€l)—(3) are equivalent to any of the following condi-
tions

(4) Iis Gotzmann, i.el andLex(/) have the same number of generators,
(5) I is componentwise linear, i.e., the ideal generated by every homogeneous component
of I has a linear resolution,
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(6) for everyh > o(I), the degreé: componentof has the forni, = f, R,—,, wheref;,
is a homogeneous polynomial of degsge
(7) ujjpr=1fori=1,...,u(l)—1.

Proof. The equivalence between (1)—(3) is proved in [H, 2.1, 2.3] in the local case and the
arguments work also in the graded case. In the graded case the equivalence between (3)
and (7) follows from Remark 3.2. The equivalence of (3) and (4) holds because, obviously,
o(I) = o(Lex(I)) and any lex-segment ideal in 2 variables satisfies (3), see Remark 2.10.
That (4) implies (5) is a general fact [HH, Bmple 1.1b] while that (5) is equivalent to

(6) follows from the fact that in two variables the only ideals with linear resolution have
the form fm*, where f is a form. To conclude, it suffices to show that (6) implies (2),
where? is any linear form not dividing the characteristic form bfand this is an easy
check. O

Definition 3.4. An ideal I C R is said to be contracted frodi= R[m/£] if I = IS N R.
Moreover, we say that is coprime for! if its initial form in gr,, (R) does not divide the
characteristic form of .

Note that in the graded case, a coprime element feljust a linear forn? not dividing
the GCD of the elements of degre€) of I.

If I is contracted, then conditions (2) and (3) hold true for &mpprime for/. Since
k is infinite, coprime elements fdr exist. More generally, given a finite number of ideals
one can always find an element which is coprime for any ideal.

By Remark 2.10, the minimum number of generators of any lex-segmentlideadx-
actly one more than the initial degree; hericis contracted. Moreovey,+ ax is coprime
for L forall a € k.

Remark 3.5. The homogeneous compondptof a homogeneous contracted idéahas
the form1, = f3 Ry—s, for all & > o(I). The elementf;, is the GCD of the elements ifi .
Furthermore, it divideg,—1 for all h > o(I). Heres;, = degJ;, is also the dimension of
R/I in degree:. So we have

I
A(R/I):('u(z))—i— 3 s

h>o(1)

The number of generators @fin degreeh > o(I) is s,—1 — s;. The lex-segment ideal
L = Lex(I) associated witll has the following formL, = x* R, .

Next we give a characterization of contragdtideals in terms of the Hilbert—-Burch ma-
trix:
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Proposition 3.6. Let R = k[x, y] and letd be a positive integer. Lets, ..., oy be elements
of the base field and by, ..., by positive integers. Then the ideal generated by dhe
minors of thel x (d + 1) matrix

ybl X+ a1y 0 o ... ... 0
0 ybz x+ay 0 o ... 0
0 ... 0 ybd x+oagy

is contracted of ordet/, and y is coprime forl. Conversely, every contracted idelabf
orderd can be realized, after a change of coordinates, in this way.

Proof. That the ideal of minors of such a matrix is contracted follows directly from
the definition. Conversely, assume thiats contracted and leL be its associated lex-
segment ideal. Say = (ao, ..., aq) is the column sequence &f The matrix above with

b;i = a; —a;—1 > 0 and all thexy; = 0 definesL. On the other hand, for every choice of the
«; we get a contracted ideal with the Hilbert functionfofWe will show that a particular
choice of they; will define the ideall . By definition, ! is determined byl and by the form

fn = GCD(Iy,) for h > d. Since we assume thatis algebraically closed, every, is a
product of linear forms. Sincé,1 divides f;,, we may find linear formg,_, +1, ..., £q

so thatf;, = H?deﬂh £;, wheres;, = degf,. Take linear formgy, ..., {s_,, in any
way. Then take a system of coordinates so thaty does not divide any of th& . In other
words, up to irrelevant scalarg, = x + «;y foralli =1, ..., d. We claim that this choice
of thew; works. The degree of;, is determined by the Hilbert function. So, it is enough to
show thatf; divides everyi-minor of degree< h of the matrix. This is easy to checkn

An important property of contracted ideals is the following:
Proposition 3.7. The product of contracted ideals is contracted.
Proof. The proof given in the local case in [H, 2.6] works also in the graded setting.

Next we recall Zariski's factorization tleeem for contracted ideals [ZS, Theorem 1,
Appendix 5]:

Theorem 3.8. Let I be a contracted ideal of ordef and characteristic forng of degrees.
Letg = gfl . ~g,’f" be the factorization of, where theg; are distinct irreducible forms.
Then! has a unique factorization as

I=m?LiLo--- Ly,

where theL; are contracted ideals with characteristic forgﬁ".
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Since we assume thétis algebraically closed the; are indeed linear forms. In the
graded setting it follows that thé; are lex-segment ideals in a system of coordinates
with g; as first coordinate. We deduce the following:

Lemma 3.9. In the graded setting and with the notation of Theof@B8we have
k d+1\ - (Bi+1

MR/ =Y MR/L; - ! :

(R/T) ;(/,H(z) Z( 2)

j=1

Proof. The idealsL; can be described quite explicitly in terms of the datal off g;
appears in the GCD ofy; with exponentg, then the GCD ofZ; in degreeg; + j is
exactlygf. Then using Remark 3.5, one gets the formula

From the factorization of given in Theorem 3.8 immediately follows that
[M=m"pnpn .l

is the analogous factorization féf. Applying Lemma 3.9 td”, summing up, and using
the formula

i((n—l—l)y—i-l) n v(1—2)+y3(1+2)
pard 2 © = 21—2°%

we obtain:

Proposition 3.10. In the graded setting and with the notation of Theo@&8we have

£ (T + Q)= i |(TH + ()=
HS; () = YO HSL () + ——— (1]—zl)[2 £+ (3
=1

3

and in particular,

k

k
e(l) = Ze(L.,') +d?— Z BZ.

j=1 j=1

Similarly one can write all the coefficients of the Hilbert—-Samuel polynomial of
terms of those of thé&; .

In this part of the sectiofRr, m) will denote a regular local ring of dimension two ahd
anm-primary ideal. We consider a coprime elemériior /, and we fix a minimal system
of generators ofn = (x, ¢).

We define now théransformof an ideall (not necessarily contracted) fh= R[m/¢].

If aisin I andd = o([) is the order off, thena /¢4 is in S and we may write

1S=1¢r,
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wherel’ is an ideal ofS. Such an ideal’ is called the transform af in S.

Notice that if I = (f1,..., f;), then I’ is generated (not minimally in general) by
f1/€?, ..., fi/¢4.1f I andJ are two ideals oRR, then(1J)' = I'J’. In fact, if d = o(I)
ands = o(J), then(IJ)S = (I1S)(JS) = ¢4¢51'J’. Therefore(1J)S = ¢4+5(1J), so the
conclusion follows. In particulag/™) = (I’)" for any integenm.

If 7 =m<, thenl’ = S. In particular, ifl =m*J, thenl’ = J'in S.

In the following we always denote by the transform of in § = R[m/¢].

We note thatS = R[m/¢] = R[x/¢] is isomorphic to the rin@R[z]/(x — z£). The ring
S is not local and its maximal ideal¢ which containm are in one-to-one correspondence
with the irreducible polynomialg in k[z].

We denote byT' the localization ofS at one of its maximal ideaN. ThenT is a
2-dimensional regular local ring called tfiest quadratic transformof R. In algebraic
geometry this construction is the well-known “locally quadratic” transformation of an al-
gebraic surface, with center at a given simple pa@indf the surface.

If I’ is the transform of in §, then(I")y = I'T is the transform of in T andIT =
41"y if d = o(I). We remark that is a regular element both isiand7'. It is known that
if 7 is primary form andN is a maximal ideal which containg, then(I")y is primary
for N oris a unit ideal. If/ is contracted, theq/’) y is a unit ideal if and only iff = m?
(see [ZS, Proposition 2 and Corollary, Appendix 5]).

In the following we assumé is not a power of the maximal ideal. Théhis a zero-
dimensional ideal of which is not necessarily primary. We will denote by M&3j(the
set of the maximal ideals associatedlto The maximal ideals in Max() depend on the
characteristic form of and on the field.

Denote byl any localization ofS at a maximal ideaN € Max(I’). The following easy
facts will be useful in the proof of Theorem 3.12.

Remark 3.11. Let d = o(I), ¢ be coprime forl, J be a minimal reduction of and
S = R[m/£]. The following facts hold:

(1) ¢ is coprime forl" and form®I" for every positive integers ands. In particular, if/
is contracted frons, then/” andm® /" are contracted fron.

(2) ¢ is coprime forJ. In fact, there exista such that/”+1 = JI” and sincer(J) =d, to
conclude it is enough to look at the minimal degrele+ d part of the corresponding
ideals of the initial forms.

(3) If I is contracted, thed I is contracted [H, proof of Theorem 5.1], and by (2) it is
contracted frons.

(4) If J =(a,b), thent’ = (a/t?, b/t%) is a minimal reduction of’ both inS andT. In
fact, if "1 = J 1", thenI"t1§ = JI"S. Sinceo(I"*1) = o(J I""), we have

(I/)n+l — J/(I/)n.
In particular, from the last equality it follows easily that M@% = Max(J'I").

We are ready to state the main result of this section.
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Theorem 3.12. Let I be a contracted ideal of a local regular ringR, m) of dimension
two. With the above notation we have

depthgy (R) = min{depthgy, (Sy): N € Max(1")}.

Proof. First we prove that gi(R) is Cohen—-Macaulay if and only if gr (Sy) is Cohen—
Macaulay for everyvV € Max(I’).

Assume that gn(R) is Cohen—Macaulay and lgt, b) be a minimal reduction of.
By Proposition 2.7, we have = (a, b)I, and in particular/2S = (a, b)IS. By definition
of the transform of an ideal one has tHa{ (1')2 = ¢! (a, b)'I' = ¢%1(a’,b')I'. Since’
is regular inS, it follows that(1")2 = (a’, )1’ in S, hence(I")2 = (a’,b’)I" in T. Thus
ary, (Sn) is Cohen—Macaulay for every € Max(I").

For the converse ldu, b) be a minimal reduction of. Since{a’ = a/¢?, b’ = b/t%}
generates a minimal reduction 8fin 7', by Proposition 2.7 we g&tl’)°T = (a’, b")I'T.
Now, by Remark 3.11(4), we note that Md% = Max((a’, b’)I"). Hence the equality is
local on all maximal ideal& which contain(a’, b')I’, thus inS

(I?=@ .
It follows that¢24(1")2 = ¢2(a’, b\ I' = ¢4(a’, b )¢ 1, that is,
=(a,b)IS.

By Remark 3.11(1) and (3), botl? and (a, b)I are contracted frons, hencel? =
I2SN R = (a,b)IS N R = (a,b)I. Thereforel? = (a, b)I and thus gf(R) is Cohen—
Macaulay. This concludes the proof of the first part of the theorem.

Now it is enough to prove that depthygR) > 0 if and only if depthgy,, (Sy) > O for
every N € Max(I’). Assume depthgkR) > 0. In particular, one has thaltngl a=1"
for everyn > 0 with a superficial forl. Leta’ = a/¢?, itis enough to prove tha(tl yitlig
a' = (I")" for everyn. In fact, from this it follows thata’ is regular in gy, (Sy) for
every localizationT = Sy becausl’)" 1T :r a’ = (I')"*! g a')y = ()%, = (I)'T
for everyn.

Let c/¢* be any element of, with ¢ € m*. Suppose:/¢* is in (I')"*t1 :g d/, that is,
es 4 < (I')"*1, To prove that/¢* e (I’)" we distinguish two cases.

If s <dn, then

¢d(n+1) zfﬁ € oD (pryntl — g

that is,£?"Sca € I"T1S N R = 1"+, Thust¥"~*c € I", and
Edﬂ Se Zdn cI"S = Edn(l )n
Al

Sincel is regular inS, it follows thatc/¢* € (1), and this concludes this case.
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Assume now that > dn and letm = (x, £). Sincet is coprime form*~¢"J" there
exists f € m*~4" " such thatf = x* — p¢ with p e m*~1. Hence we get that

X S_ p i o f nn
(Z) _(gsl)-'_ﬁ W|th£—se(1) .

Sincec € m*, we may writec = ux* + g¢ with u € R, g € m*~1. Now
c X\ a4 _q+pu f
F“(z)*zs——ﬁﬁw—s'

Hence Lt2 € (I')"*1: ¢’ and we have to prove th&fE" € (I)". By repeating this
argument, after — dn steps we are in the already discussed casein.

We now assume that depthgy(Sy) > O for everyN € Max(I") and we have to prove
that depthgr(R) > 0. We recall that ifJ = (a, b) is a minimal reduction of, thenJ' =
(a/t?,b/t4) is a minimal reduction off’ in T = Sy and, by the assumption, we may
suppose that’ = a/¢? is regular in g, (T).

Thus(I’)’}VJrl ;v a’ = (I')}, for everyn > 0 and for everyN € Max(I") which implies
(1"t .ga’ = (I)" because it is a local facn the maximal ideal®/ € Max(I’).

We conclude if we prove that'* : ¢ = I" for everyn > 0.

Letb € I"t1 g a, thatis,ba € 1", Sinceo(I"™) = d(n + 1) ando(a) = d, one has
o(b) > dn. Then

ba = Ed(nJrl) gd?nil) — Ed(nJrl)%gid c In+l — Zd(n+l)(1/)n+l’

and sincet is regular inS, 5 & € (I')"*1, thus 7 € (I')". It follows thatb = ¢4" 7. €

edn('y" = 1S, and therb € I"SN R = I", sincel" is contracted frons. O

Theorem 3.12 can be applied also in the graded setting by localizing. We present now
some corollaries which hold both in the local and in the graded case.

Corollary 3.13. Let I andJ be contracted ideals with coprime characteristic forms. Then
depthgy, (R) = min{depth gy (R), depthgr (R)}.

Proof. Note that ifg = gfl e g,’f" is a factorization in irreducible factors of the character-

istic form g of an ideall, then
Max(1') = {(gi/¢, 0): i=1,....k},
wheref is a coprime element fak. Since the characteristic forms dfandJ are coprime,

Max(1") N Max(J') =@. Thus(1J)}, = I, for everyN € Max(I') and(/J)}, = J,, for
everyM € Max(J'). By using twice Theorem 3.12, we have
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depthgy; (R) = min{depth ay;, (Sn), depth ay; (Sm): N € Max(1'), M € Max(J")}
= min{depthgy (R), depthgy (R)}. |

In particular:
Coroallary 3.14. Consider the factorization of a contracted iddads in Theoren3.8. Then
depthgy(R) = min{depthgy . (R): i =1,...,k}.

The above result leads to study the deptthefassociated graded ring of a lex-segment
ideal. This will be the topic of the next section.

Remark 3.15. Trung and Hoa gave in [TH] a combinatorial characterization of the
Cohen—Macaulayness of semigroup rings wtgan be applied to the study of the Cohen—
Macaulay property of the Rees algebra of moreindeals. In principle their result in
connection with Corollary 3.14 can be used to give combinatorial description of the
Cohen—Macaulayness of the associated gradey 0f contracted ideals. In practice, how-
ever, we have not been able to obtain such a characterization.

By Corollary 3.14 and Example 2.11, we have

Corollary 3.16. Consider the factorization of a contracted ideahs in Theoren8.8. If
o(L;) < 2foreveryi =1,...,k, thengr, (R) is Cohen—Macaulay.

Consider the Rees algebRal) = @, . I" of 1, and the fiber cong(/) = gr;(R) ®
R/m of I. In the special case(L;) = 1, one has the following theorem.

Theorem 3.17. Let I C R = k[x, y] be a homogeneous contracted ideal witll) = d.
Assume that the characteristic form is a square-free polynofibtas no multiple factons
Then:

(1) The Rees algebr& (/) is a Cohen—Macaulay normal domain and the defining ideal
J of R(I) has the expected form in the sensfdak, §8.2Jand[MU, 1.2], that s, J is
the ideal of2-minors of a2 x (d + 1) matrix H.

(2) The associated graded rirgy; (R) is Cohen—Macaulay with Hilbert series

AMR/D + (5)z

HS; (2) = 1_22

(3) The fiber coner'(I) is a Cohen—Macaulay reduced ring defined by 2hminors of a
2 x d matrix of linear forms. Furthermore? (1) is a domain if and only if =m¢.

Proof. By Corollary 3.16, gf(R) is Cohen—Macaulay. Henc®&(I) is also Cohen—
Macaulay. Since GCQy,) is square free/ is given by thed-minors of the matrixp of
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Proposition 3.6 withy; # «; if i # j. It follows immediately that the ideal of the entries of
¢ is m and that the ideal of thel — 1)-minors of¢ is m?~1. By [MU, 1.2], we conclude
that J has the expected form, that is, it is given by the 2-minors of a certain métrix
We can write down explicitly the matrix. If we preseR(/) asR[to, ..., t4]/J by sending

t; to (—1)' times thed-minor of ¢ obtained by deleting th& + 1)th column, thenJ is
generated by the 2-minors of the matrix:

g © e+t y1 g aoto 4+ yP2 L gty + yPa g
-y n 12 e tq

By Theorem 3.8/ is a product of complete intersections of ordeThus/ is integrally
closed. In a two-dimensional regular ring, this is equivalent to the normaliB/(@j. This
conclude the proof of part (1). For part (3) one notes that the defining equatioff pare
the 2-minors of the matrix obtained frofi by replacingx andy with 0. The dimension
of F(I) is 2 and the codimension df (1) is u(l) — 2, i.e.,d — 1. SOF(I) is defined
by a determinantal ideal with the expectemtionension, thus it is Cohen—Macaulay (see
[BV]). That F (1) is reduced follows by the fact that one of the initial ideals of its defining
ideal is (t;t; : 1 <i < j < d). Finally, if I is not m¢, then at least one of the;, say
by, is > 1 and then some of the generators of the defining ideat @) haver, as a
factor. ThereforeF (1) is not a domain. Now, if = m?, then F(I) is thedth Veronese
algebra ofR, hence a domain. It remains to prove the assertion on#SSince gy (R) is
Cohen—Macaulay, its-vector has lengtkl 1. Obviouslyko(l) = A(R/I). Since thel; are
complete intersections argi = 1, from Proposition 3.10 it follows thaty (1) = (4). ©

In the above theorem it is proved thiat(/) = (g) for contracted ideal with square free
characteristic form. In general the following inequalities hold:

Proposition 3.18. Let I C R = k[x, y] be anm-primary homogeneous ideal. ifis mono-
mial or contracted, theiy (1) > (““)7) ande() = A(R/1) + () 7Y).

Proof. In general, one knows that7) > ho(I) + h1(I), see [V1, Lemma 1]. So it is
enough to prove the first inequality. By Proposition 3.10, if the inequality holds for lex-
segment ideals, then it holds for contracted ideals. Thus to conclude it is enough to prove
the first inequality for monomial ideals.

Let I be a monomial ideal, say with associated column sequee€éuy, ..., ay) and
differences sequenée= (b1, ..., bg). Now one hag.(I) = |{i: b; > 0}| + 1. Suppose that
one of theb; is > 1, sayby > 1. Setc = (c1, ..., cq) With ¢; = b; if i #k andcy = by — 1.
Denote byf the sequence whose differences sequencd.s., fo =0 andf; = Z;’:l cj,
and by J the corresponding monomial ideal. In other words=a; if j <k and f; =
aj —1if j > k. We claim that

hi(I) 2 ha(J). 2)
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To prove this note first that

AMR/I) —)\(R/J)zza,» —Zﬁ =d—k+1

Therefore
hi(1) — hi(J) = A(R/1%) —A(R/J?) —3(d —k + 1)
and hence (2) is equivalent to:
AMR/I?) —1(R/J?) > 3(d -k +1).
Denote bya® and 7@ the column sequences associated withand J2, respectively.

Note thatai(z) =aj+a, forsomej andh withO< j,h<dandj+h=i.1fi >2k -1,
then at least one amongh is > k and ifi > k 4 d, then bothj, 4 are> k. It follows that

72, ifi=0,...,2—2,
a@>1 @ if i —
21 P fi=2k-1. k+d -1,
P42 ifi=k+d,... 2.

We may conclude that

2d 2d
WRITP) = A(R1IA)=D"a? =3 fP >3-k +1)
i=0 i=0

as desired. Since the number of generators ahd J is, by construction, the same, it is
now enough to prove the assertion frRepeating the argument it is enough to prove the
statement for a monomial ide& whose differences sequence consists only of 0 and 1.
Such anideal has+ 1 generators and one generator, nany€lyof degreex. In particular,

it is a lex-segment ideal with respect $o0 whose differences sequence does not contain
0. After exchangingc and y and by applying the same procedure as abovél tmne
ends up with a power of the maximal ideal, for which it is easy to see that the inequality
holds. O

One may wonder whether the inequality(/) > (“)~%) holds more generally for
everym-primary ideal/. We believe that this is indeed the case.

In general/i2(1) need not be non-negative for anprimary ideall. The ideall gen-
erated by 4 generic polynomials of degree 7 and one generic polynomial of degree 8 (take
for examplex’, y’, x3y% x8y — xy®, x2y6 — x3y3) hash(I) = —1. On the other hand,
there is some computational evidence that

Conjecture 3.19. For a contracted ideal one hasiz(1) > 0.
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Note that, in view of Proposition 3.10, to prove the conjecture one may assume right
away that/ is a lex-segment ideal.

4. Lex-segment ideals and depth of the associated graded ring

In this section we study the depth of the associated graded ring of a lex-segment
ideal in k[x, y]. This is strongly motivated by Corollary 3.14 which moves the compu-
tation of the depth of the associated graded) from contracted ideals to lex-segment
ideals.

We start by giving classes of lex-segment ideals whose associated graded rings
have positive depth or are Cohen—Macaulay. Notice that we can apply Theorem 2.4
to such classes since, in our setting, (@inis a lex-segment ideal. In the second part
of the section we find new classes of lex-segment ideals whose associated graded
ring is Cohen—Macaulay by interpreting Theorem 3.12 in the case of lex-segment
ideals.

Let L be a lex-segmentideal iR = k[x, y]. As we have already seen, one has

d _d-1_a d-2.a a
Lo (x4, Ly pd2ye o)

with 0=ag < a1 <az <--- <aq. The sequencéy, ..., by), with b; = a; — a;_1, is the
differences sequence éf From now on we may assumag > d, otherwiseL = m< and
its associated graded ring is Cohen—Macaulay.

By Proposition 2.7, iff is anm-primary ideal inR with 12 = J I for a minimal reduction
J of I, then gy (R) is Cohen—Macaulay. We show now that in the class of lex-segment
ideals, L2 = J L for certain kind of (non-minimal) reductios, will yield positive depth
for the associated graded ring.

Proposition4.1.LetL = (x4, ..., y%) be alex-segmentideal 1 = (x4, x4~ y%  yad)L,
forsome =0, ...,d, thendepthgy (R) > 0.

Proof. We show thatL” : (x4, y%) = L"~1 for all n > 1. Forn = 1, it is obvious. Let
n > 1 and assume that the result is true/ior 1. Leth € L" : (x?, y%). Without loss of
generality we may assume thiats a monomial. Sincé” = J"~1L, we may write

hxd — (xd)rl(xdfiya,‘)’? (yad)r3g1’ (3)
hy® = (x9) (2 y )R (y) g2 (4)

forsomegy, goe Land) ,ri=n—1= Zj s5j. We need to show that e L' 1 1fr >0

ors3 > 0, thenclearly: € L" 1. Suppose; = s3 = 0. If sp = 0, thens; =n—1. Therefore,
x —degh > (n — 1)d so thath € L"~L. Similarly, if 7, = 0, thenrz =n — 1. Hencey —
degh > (n — 1)ay so thath € L"~1. Suppose, > 1 ands, > 1. Then from (3) it follows
thaty — degh > ag_; and from (4) it follows thatr — degh > d — i. Therefore x4~ y%
dividesh. Write h = x?~y% 1. Then we have
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hlxd _ (xd)rl(xd*iy”’)rzfl(y“d)mgl,

hyy = (xd)n(xd—iya,-)w—l(yad)Sng

Thereforehy € L"1: (x?, y%) = L"~2, by induction hypothesis. Henée= x4~y h; €
L™~ ThereforeL" : (x?, y%) = L"~! for all n > 1 and hence depthg(R) > 0. O

The following proposition gives a class of lex-segment ideals to which one can apply
Proposition 4.1:

Proposition 4.2. Let L = (x4,...,y%) be a lex-segment ideal such thbg > b3 >
.= bg. ThenL? = (x4, x4~ 1ye1, yea) L, In particular, depth gy (R) > O.

Proof. Set J = (x4, x?~1ym y) We need to show that for all & i < j < d,
x4-iydixd=iyei e JL.
We split the proof into two cases:

Casel.If i + j — 1< d, then we show that?—i—J yaitaj = yd=lyar . yd=i=j+lyairj1 .y
for some monomiad:.

Consider the following equations:

(1) aivj—1—aj=bitj-1+bitj2+ - +bjs,
(2) ai —a1=bi+bi—1+ -+ bo.

Sinceby > b3z > -- -'2 'bd, ai—ai1=ajyj-1 —aj. Thereforeai +aj > ajyj_1+a1. Hence,
we may writex2d—i=Jyaitaj — yd=lya1 yd—i=j+lyaiij1. m for some monomiak, SO
thatx2/—i—Jyti+taj ¢ JL,

Casell. If i + j — 1> d, thenx2—i—Jyaitaj — yd—k=lyai1 . yaa . /' for some mono-
mial m’, wherek =i + j —1—d.

As in Case |, writeay — a; anda; — ax4+1 as sum ofp; and conclude that; +a; >
aq +ag1. Thereforex2d—i—jyaitaj — yd—k=lyac1 . yaa. ' sothate?d——J ysitaj ¢ JL.

Therefore, for all 0< i < j <d, x%2~1=Jy%+4 ¢ JL and hencd.? = J L. Now using
Proposition 4.2, we may conclude that depth@®@) > 0. O

We apply now the theory developed in Section 3 to lex-segment ideals. Recall that a
lex-segment ideal = (x?, x?=1ya .. y9) s contracted fron = R[m/y] = R[x/y].

In particular,LS N R = L andLS = y¢L’, whereL’ is the monomial ideal of gener-
ated by the elemen(%)d—"y“f—" foreveryi =0,...,d.

It will be useful to consider : S = R[x/y] =k[x,y, z]/(x — yz) = P =k[y, z] the
natural ring homomorphism defined by sending the clasg(@f y, z) to f(yz, y, z) for
every f(x,vy,z) € k[x, y, z]. It is easy to see that is an isomorphism. We sdt(L) =
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(L), so thatT (L) could be identified with a monomial ideal iix, y]. Moreover, one
has

ary)(P) = grp(S).

These facts hold for every contracted ideal, oxdy for lex-segmentideals. In practice, the
ideal T (L) can be obtained fromh by substitutinge with yz and dividing any generator
by y¢, whered = o(L). In the following examples we explain in details the procedure.

Example 4.3. Let L = (x*, x3y, x2y3, xy*, 19 c R = k[x, y]. Note thato(L) = 4. The
transformL’ of L is defined to be the ideal & = R[z]/(x — zy) such thatL§ = y*L’.
Thus one has

LS = (y*2% y*23, %22, v%2, y19) 8 = v (2% 22, v22 y2. y°) S = y*(23, vz, » ) s,
and via the isomorphism one getsl' (L) = (z3, yz, %) in P =k[y, z].

We remark that in the particat case of a lex-segment idef] its transformL’ is a
primary ideal forN = (y, x/y) or equivalentlyT (L) is a primary ideal for(y, z). Hence,
by Remark 2.2,

ar.(S) = ar, (Sn).

Now we may rephrase Theorem 3.12 in the case of a lex-segment ideal. As a conse-
guence one has that to compute the depth of the associated gradediringetan pass to
the transforn? (L) of L, which is in general easier to study. In particufat7 (1)) < u(l)
ande(T (1)) < e(l), see [H, 3.6].

Theorem 4.4. Let L be a lex-segment ideal iR = k[x, y]. With the above notation we
have

depthgy (R) =depthgg ., (P).

Proof. Since gy, (P) =~ gr./(S), it suffices to prove that depthgiR) = depth gy, (S).
The ideal L is primary form = (x, y) and L’ is primary for the maximal ideaN =
m + (x/y), hence by Remark 2.2, g(R) ~ gr, (Rm) and g, (S) = grL/N(SN). Now
the result follows by using Theorem 3.120

As an immediate application of the theorem, we find classes of lex-segment ideals,
whose associated graded ring is Cohen—Macaulay.

First, we want to give an explicit description of the id&&L), whereL is a lex-segment
ideal. LetL = (B1, ..., By+1) be the decomposition of the minimal set of generators of
L in subsets of elements of the same degree, thaB;iss the block of the elements
of degreed + i — 1. AssumeB;1 # . In Example 4.3 one haB; = {x*, x3y}, B, =
{x2y3,xy%, B3=---=Bs=0, Br=1{y'%.
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Let
|B1l=p1+1, |Bi|=p; fori=2,...,s+1
Proposition 4.5. With the above notation one has
T(L) = (depl) + (de(p1+~~~+p;)yi71: i>2 pi# O).

Proof. By definition one ha®; = {x?, ..., x4~P1yP1} and

pit-tpioiti o d=(p1ttpi)

y

B; = {xd—(l?1+---+pi—1+1) y

P1+~'+pi+i—1}
fori > 2. Applying the transform to the elementsgf, one obtains the set
T(B) = {Zd*(PlerJrPiflJrl)yifl7 s Zd*(PlJr"'JrPi)yifl}7
hence the ideal
(T(B,')) — (Zd—(p1+---+pi)yi—1)
and this concludes the proofo

It is natural to ask under which conditions 1§ L) a lex-segment ideal. As an easy
consequence of Proposition 4dke gets a characterization:

Lemma 4.6. Let L be a lex-segment ideal. Th@(L) is a lex-segment ideal if and only if
one of the following holds

(1) pi <1foreveryi > 2;
(2) pi; #0foreveryi > 2.

Moreover, in casg2) T(L) is a lex-segment ideal with respect toand its differences
sequence i$p;11, ps, - - -, P3, P2).

Proof. By Proposition 4.5, one has

T(L) = (Zd—l’i’ Zd—(m-‘rpz)y’ Zd—(p1+p2+p3)y2’ s zd_(p1+"'+p5)ys_1, yS)_

It is clear thatT (L) is a lex-segment ideal with respect4adf and only if p; < 1 for
everyi > 2. Note that by definitiorff;rl pi=dands +1=ay —d + 1, and let rewrite
T(L)as

ag—d aq—d—1 2_pat+ +t +-t
T(L)= (y d—d yad 7P, y P4 Ps+1 yzp3 Ps+1 P2 P:+1)_

It follows thatT'(L) is a lex-segment ideal with respect¢af and only if p; # 0 for
everyi > 2. When this is the case the differences sequengeisi, ps, ..., p3, p2). O
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Remark 4.7. Recall that the differences sequencd.a$ (b1, ..., by), Withb; = a; —a;_1.
Note that the difference between the degree®fi y% and the degree of?~i*+1y%-1 js
b; — 1. Thus the conditions of the lemma above can be written in terms df; tHe fact,
condition(1) is equivalentta; > 2 if b;_1 > 2, that is, the generators &fof degree> d
have all different degrees. ConditigB) holds if and only ifb; € {1, 2} for everyi, that is,
there are generators in every degree betweanda,.

By the above lemma, Example 2.11, and Theorem 4.4, we get new classes of lex-
segment ideals with Cohen—Macaulay associated graded ring:

Proposition 4.8. Let L be a lex-segment ideal. Assume that one of the following holds

(1) O< p2<p3<--- < psg1, OF
(2) p2=2p3>=--- = psr1-

Thengr; (R) is Cohen—Macaulay.

5. Generic formsand lex-segment ideals

Theorem 2.4 points to a question: “find classes of ideal® such that the associated
graded ring of its initial ideal has positive depth.” It is known that if chas 0 and! is
an ideal inR = k[x, y], then the generic initial ideal gi) is a lex-segment ideal. We say
that an ideall is a generic ideal if it is generated lgeneric forms of given degrees and
a lex-segment idedl is generic, if it is the lex-segment ideal of a generic ideal. It is not
always true that the associated graded ring of a lex-segment ideal has positive depth, see
Example 2.5(a). In this section we produce a sub-class of the lex-segment ideals, namely
lex-segmentideals of genericprimary ideals, with positivelepth associated graded ring.
Let I be a generien-primary ideal inR. We begin with a lemma which will help us in
identifying the structure of a generic lex-segment ideaRinFor a polynomialf (z) =
Zi a,-zi € Z[z],welet]| f(z)| = Zi b,’Zi with b; =a; if ag,...,a; > 0andb; =0 if a; < 0
for somej <i,and letAf(z) = Y, (a; —ai—1)7".

Proposition 5.1. Let H(z) € Z[z]. Then

T @ =)
"= ‘ (1—2)?

for some integerds, ..., d,+1, r > 1if and only if
AH(Z) — 1+ 4+ Zdl_l _ plZdl _ pzzdl-i-l L pszdl-‘rs—l _ Czdl-i-s’
whereO< p1 < pa<--- < ps, 0<c < pyand)_i_; ps +c=d1.

Proof. Assume thatd (z) has the given form. We induct onLetr = 1. Then
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(1-zM1-z?)
(1-2)2

=142+ +diz b diz2 4 @ - DR B2

H(z) = =[(14z4+ -+ A4z 4+ 227

Therefore
AH@Z)=14z4 -4 z071_glo bl _ . _ ditdo—1
Then
O=p1=-=Ppdpdy <1=Ppap—di+1="""= Pdr—1
Also

Y pi=(di+d2—1)—(d2—1) =

Hence the assertion follows.
Now assume that > 1 and that the assertion is true forak r. Let

, [Ti=:1
H@—\liz)z

Then by inductive hypothesis, there exigt ..., ps,c such that < p1 <--- < ps; 0<
c<ps: Ypitc=diandAH' (2) =1+4z+4 -+ = pizfi— ... — pdrts—l_
cz™*s Therefore, if we write'(z) = Y, a;z', then

i+1, ifi=0,1,...,d1 — 1,
{dl—zlj—:dlﬁlpj, !f di<i<di+s—1, (5)
0, if i >di+s.
We have
(1—z%)

H(z) = =|H'(2)(1 - z%+)).

122 (1=2)

If dry1>degH'(z) =d1+s — 1, then|H'(2)(1 — z%+1)| = |H/(z)| = H'(2). Therefore
assume that, ;1 < dy +s — 1. If we setH'(z)(1 — z%+1) = Y, b;Z', then

b'_ a;, |f0§l§dr+1—1,
"Tla—-G+YD, ifi=dgi+ .

Seth =maxi > d,+1: b; > 0}. Therefore,

|H'(2)(1-z%+1)| =
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We need to prove that P(z) has the required properties. Denotedg (z);, the coefficient
of AP(z) in degree. Then

AH'(2), if i <dpy1-1,

AP@)i= {AH'(z),- —1, ifdea<i<h,

andAP(z)p+1 = —by. Then

h dry1—d1 h—d1+1
Y AP@i+bi= Y pit+ Y. Ipi+1+@n—h+dia—1)
i=dq i=1 i=d,41—d1+1
h—dy+1

= > pitth—duya+D+ay—(h—d1+1)
i=1
h—di+1

= Z pi+an=di
i=1

because by Eq. (5) one hag = d1 — Z};;?H p;j. ThereforeAP(z) = AH(z) satisfies

the required properties.
Let

AH@Z) =1+z+ - +z07 = przf— o — pdits=1 _ cpdts
with p; andc¢ satisfying the given properties. We prove by induction mn Suppose

ps=1.Thenc=0and[p1,...,ps]=1[0,...,0,1,..., 1] for certain number of O’s, say
and 1's, sayn. Setd, = dy + 1. Sincel +m = s, we have

degn |O 1 ... di—-1 dv ... dp ... di+dr—1
AH), |1 2 ... 1 o ... -1 ... -1
Therefore,

(1—zM)(1—z%)
H(z) =
(2) 1-272

Now assume thap; > 1 and setj = maxXn: p, > p,—1}. Then we have, X j <s and
pj =---= ps. Sincep; — 1> 0, there exist non-negative integers- such that + s —
J+1=(ps—Dg+rwithO<r < p; —1.

Define a polynomiaH’(z) € Z[z] such that

1, if0<i<di—1,
—piy1, fdi<i<di+j-2,

AH'(2)i=4-pj+1 ifdi+j—-1<i<di+s—1+q,
—r, ifi=di+s+gq,

0, ifi>di+s+gq.
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Then
OSpis<--<pjaspj—l=-=pj-L0<r<pj-l=p;—-1
and
i1 s
Do pitG—j Tl pi =D Hr= pi—G—j+D+aqlps—D+r
i=1 i=1

N
=Y pite=di
i=1
Therefore, by induction there exigt < dz < --- < d, such that

‘HLl(l—Zd’)‘

H@) = (1—12)2

We show thatH (z) = |H'(z)(1 — z%2t/~1)|. Note thatH'(z); = H(z); fori <di+ j — 2
and H'(z); = H(z)i +i — (di+ j — 2). Therefore[H'(z)(1 — z2+/~1)]; = H(z); for

i <di+s—1andH(z); =0fori > d1+s—1. To complete the proof, we need to show that
H'(D)ag4s-1—(pj =1 — (s — j+2) <0.SinceH" () ay+s—1 = H(@D)dj45-1+s— j+1=
c+s—j+1,wehaveH' (z)g+5-1— (pj — 1) — (s — j +2) =c — ps <0. Therefore

H@=|H@@1-z2%1). o

Using the above proposition, we describe threicture of generic lex-segment ideals
in R. We recall that, given a homogeneous ideal R, the Hilbert series H/; (z) of R/1
is defined to be) ", o HF g/ (1)z', where Hig,; (1) = dimg(R/ 1), is the Hilbert function
of R/I.IfdimR/I =0, then H&/;(z) is a polynomial.

Proposition 5.2. Let I € R be an ideal generated by > 2 generic forms of degrees
di, ..., d, respectively. Le = min{d;}. Then

(1) the Hilbert series ofk/I is such that
AHSg/ (@) =142+ -+ 27— przd — o = pd T g,
withO< p1 <+ < ps,0<ec<psand)’; pi +c=d.
(2) Lex(I) = (x?,x9y®, ..., y%) such that there ar@1 + 1 elements in degreé¢ and p;
elementsin degre#+i —1fori =2,...,s andc elements in degre@¢+ s.

Proof. (1) The Hilbert series oR/I is given by

(1—z%)...(1—z%)

HSg/1(2) = 1_22

’
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for a simple proof of this fact, see [V2, 4.3]. Now the assertion follows directly from
Lemma5.1.

(2) Since the Lew/) and I have same Hilbert function, the assertion follows
from (1). O

We set the notation for the rest of the section. Let (x?, x4=1ya . %) pe alex-
segmentideal iR = k[x, y], wherea; + 1 < a;+1. Recall the notation set up in Section 4:
let L = (By, ..., Bs+1) be the block decomposition éf such thatB1| = p1+1,|B;| = p;
fori =2,...,s + 1. For the rest of the paper, we set

€= Ps+1-

From Proposition 5.2, we haveQp1 < --- < py and 0< ¢ < p;.

Now we proceed to prove that the associateatigd rings of generic lex-segment ideals
have positive depth. Recall that there aresegment ideals whose associated graded rings
have depth zero, see Example 2.5.

Theorem 5.3. Let L be a generic lex-segment idealf Thendepth gy (R) > 0.

Proof. We split the proof into two cases, namely = 0 andp, > 0.

Let po = 0. Note that, in this case, in degréethe lex-segment idedl has only one
generator, namely?. By Proposition 4.1, it is mough to prove that for somg L? =
(x4, x4=1y4 yd) [ Following the notation set up above, fo= 1, ..., s +1, let B; denote
theith block of elements of degrek+ i — 1, of the minimal generating set &f Let x? y4
be the last element in the blodk. Then

Claim. L2 = (xd,xpyq, ye)L.

To prove the claim, we need to show that, for ang 1< j < d, x%~=iy%+aj ¢ JL,
whereJ = (x4, xPy4, y%). As in the proof of Proposition 4.2, we split the proof of the
claim into different cases.

We first show that ifi + j < d, thenx2d—i—iyaitaj = yd . xd=i=jyaitj . for some
monomialm. It is enough to prove that; + a; > a;4 ;. Letb; = a; — a;—1. Consider the
following equations:

° ai+j—aj=bi+j+bi+j71+“'+bj+l.
e aj=bit+bi—1+---+b1

Since pp =0, a1 > 2. Also note that since, < p3 < --- < ps, the number of 2’s ap-
pearing in{b;;, ..., b;41} is at most the number of 2's appearing{in, ..., b1}. Hence
a; > ajyj—a;. Thereforay; +a; > a;4; and henca ==/ yai+aj = xd . xd=i=jyai+j .,
for some monomiat.

Using similar arguments, we can show that

o ifd <i+j<d+t, wheret =d— p, thenx2d—i—J yaitaj = xPyd . xi+i—tyda-i-jti .y
for some monomia#:, and
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o if i+ j>d+1,theny2d—i—jyditaj = x2d=i=jyaitj-d .y .y for some monomiat.

Thereforex2?—i—Jjyataj ¢ JI for all 0<i < j <d, so thatL? = JL. Hence, by
Proposition 4.1, depthg(R) > O.

Now let p» > 1. Note that in this case, theeare minimal generators éfin all degrees
fromd toay. By Lemma 4.6 7 (L) is a lex-segment ideal with respectitan P = k[z, y].
Write

T(L) = (yad—d’ yad—d—lzc’ yad—d—2Z6+p.‘ N yZC+ps+---+p3’ ZC+ps+"'+P2)_

Thenby =c andb; = ps_;jy2,fori =2, ...,s. Hence we havé, > b3 > - - - > b,. There-
fore,

(T(L))2 _ (ys—l’ yS—ZZc’ ZC+”“+"'+1’2)T(L),

by Proposition 4.2. Therefore by Proposition 4.1, depthg(?) > 0 and hence by The-
orem 4.4 depthgr(R) >0. O

Example 54. (a) Let I = (f1, f2, f3) be a generic ideal such that dgég= 5,
degf> = 7, degfs = 8. Then, a computation as in the proof of Proposition 5.1, will give
thatAH =[1,1,1,1,1,0,0, -1, —2, —2]. Therefore the corresponding lex-segmentideal
is L = (x°,x% 3 , x3y5, x2y8 xy8, yg) It can be seen that? = (x°, y°)L and hence
gr.(R) is Cohen Macaulay. In Theorem 6.4 wewadty prove that the Rees algebra of
such ideals are normal.

(b) Let I = (f1, f2, f3, fa, f5) be a generic ideal such that dég= 10, degf> = 12,
degfs = 13, degfs = 15, degfs = 15. The corresponding lex-segment ideal is

L= ( 10 x9y3 x8y5 X y X y x5y9 x4yll 3y12 2yl3 yl4’ ylG)

and its Hilbert series is

97+ 58; + 73

HS. (2) = 1_22

By Proposition 2.9, one has that depth@R) = 1

For a generic lex-segment idela) we have seen thaB;| — 1< |B2| < --- < |By| and
|Bs+1| < |Bs|, whereL = (B1, ..., Bs1+1) is a block decomposition of. Therefore, in
terms of the number of generators in each degree, there can be an “irregularity” in the
last block of elements. Since we have shown that the associated graded ring of generic
lex-segment ideals have positive depth, it is natural to ask, whether the associated graded
ring is Cohen—Macaulay when this “irregulatiig removed. In the following theorem, we
answer this question affirmatively.
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Theorem 5.5. Let L be a generic lex-segment ideal R such thatc = 0. Let J =
(xd=P1yan x4 4 ya) ThenL? = JL and L is integrally closed. In particulargr; (R)
is Cohen—Macaulay.

Proof. Let L = (x4, x?~1ya1  xy%-1 ya) Following our previous notation, let
p1+1=1|B1| and p; = |B;| fori = 2,...,s. First we prove that.? = JL for J =
(xd=P1yan xd 4 yad) \We show that for K i < j < d, x2—1=Jy4taj ¢ JI. We split
the proof into three cases:

Casel.i+ j < p1. Write

x2d7i7jydi+aj — (xd + ydd)(xd*i*jydi+aj) _ xd*i*jydi+d_/+dd_
Note that fori < p1, ai—1 + 1= a;. Thereforea; + a; = a;yj, if i + j < p1. Hence

(x4 ytayyd=i=iyti+taj ¢ L. Now,

xd—i—jyai+aj+ad — (xd—piyapl) (xd—(d—l’1+i+j)yai+aj+ad—ap1).

Since the number of minimal generatorsiofin each degree in increasing, as argued in
the proof of Theorem 5.3, we can show that-a; + aq > ay—p,+i+j + ap,. Therefore
(xdf(d7p1+i+j)ydi+aj+ad*ap1) eL so thatdefiijaH»a_,’ cJL.

Case Il. p1 <i+ j<d+ p1. Writing a; — ap, anda;y;_p, — a; as in the proof
of Theorem 5.3, one can easily see that, in this ease a; > a,, + a;4;—p,. Hence
x2d=i=jyaitaj ¢ .

Caselll.d+p1<i+j.Then2 —i— j=d— p;—k forsomek > 1. Therefore we can
write

x2d7i7jya,'+a_,' — (xd + yad)(xdfplfkyaﬂra_,’fad) _ x2d7plfkya,‘+aj7ad.

Arguments similar to that of in the proof of Case I will show thdt P2 =% yaitaj=ai ¢ I,
andx2d—ri—kyaitaj=ai ¢ JI Hencex?~1~/y%+aj ¢ JL. ThereforeL? = JL.

Now we proceed to prove thatis integrally closed. From Corollary 3.14, it follows that
if L hasr generators in the initial degree, thén=m" N for a lex-segment idedV . It can
easily be seen that if is generic, then so i%/. Note also that there is only one generator
in the initial degree (i.e.p1 = 0) andc = 0 for N. We have considered such ideals in the
next section. In Theorem 6.4 we have proved that lex-segment idealpwithe = 0 are
integrally closed. Therefor®' is integrally closed. Sincé is a product of power of the
maximal ideal (which is integrally closed) amd, L is integrally closed. Hence g(R) is
Cohen-Macaulay. O

We end the section with another class of-legment ideals whose associated graded
rings are Cohen—Macaulay, namely lex-seghiéeals corresponding to ideals generated
by generic forms of equal degree.
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Proposition 5.6. Let I be anm-primary ideal generated by generic forms of equal degree.
Let L be the lex-segment ideal correspondindg tdhengr; (R) is Cohen—Macaulay.

Proof. LetI be generated by forms of degreel. Then the Hilbert series a/1 is

(1—z4r

HSg,1(z) = =02

A direct computation shows that k7 (n) =n +1forn =0,...,d —1,and fori >0

d—@r-1@G+1), fd—@Er-1GE+1 =0,

HFgy1(d +1) = { 0, otherwise.

Therefore
AH=[11,....1,—\r+1,—r+1,...,—r+1, —cl,

where 1 is repeated — 1 times,—r + 1 is repeatedid /(r — 1)] times, wherdd /(r — 1)]
denotes the largest integer smaller or equal i@ — 1), and 0< ¢ < r — 1. Hence the
corresponding lex-segment ideBlhaver generators in degre#, r — 1 generators in
degreal+ jfor j=1,...,d+[d/(r —1)]— 1 andc generators in degree+ [d/(r — 1)].
Thus, by Proposition 4.8, gtR) is Cohen—Macaulay. O

6. Reesalgebrasof lex-segment ideals

In this section we study the Rees algabof lex-segment ideals. For an iddain a
ring R, the Rees algebrR (/) is defined to be th&-graded aIgebr@,@0 I". It can be
identified with theR-subalgebraR[/7] of R[t] generated by¢, wherer Is an indetermi-
nate overr.

Let 7 = (x4, x4 1ya . y%) be a lex-segment ideal iR = k[x, y]. Consider the
epimorphism ofR-graded algebras

Y :R[To,..., Tyl — RU)

defined by settingy(T;) = x?~y%r and letH = kery be the ideal of the presentation

of R(I). The goal of this section is to describe explicitly a Grébner basi ofor some

of the classes of lex-segment ideals we have considered. We begin by describing a set of
binomials which are not in kef.

Lemma 6.1. Leta, b, ¢, f, g be integers bigger than or equal  The idealH does not
contain non-zero elements of the following forms

14Ty — T T

£ With1<i,j<d-1,

VTPTS ¥/ TS With0<i,j<d -1,
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TSTIT! — YT TT! with1<j#k<d—1,0<1h<1.

b y“Tj:f T, is in H; then y(T'T), ) =
I/f(ychlf Tf+l), and by comparing the degrees respectively, #fone has

Proof. Suppose thain; — m; = TAT?,

a+b=f+g, 6)
ad—i)+bd—-i—-1)=fd—-j)+gd—j—D.

Sincea+b= f+g,ad+bd = fd+ gd and thus from6), it follows thatai + bi + b =
fj+gj+g Thereforeg —b=(f+g)(i — j).

If i > j, then, sincef + ¢ > 0, ¢ — b > 0. Again from(6), we getthaig — b > f + g,
i.e.,—b > f. Therefore, the only possibility is thgt =5 =0 and henceé = j + 1. This
implies thata = g andc = 0. Hencen; =m;.

If i < j, then one concludes in the same way as before, since oe-hgs= (a + b) x
(J—i).

If i = j, then by(6) one hash = g, and therefores = f andc = 0. Again we have
mi=m;j.

Identical arguments will show that a non-zero equation of the fﬂrm’f TS — yij‘.g,
with0<i,j<d—1,isnotinH. _

Suppose now that an element of the form — m = Té’TjT; — T T$Tl isin H.
By a degree comparison this implies

a+b+l=f+g+h,
ad+1d—j)=df +h(d —k),
bag +laj =c+ gaq + hay.

We distinguish different cases.

If l=h=0,thenone has = f, b=g, andc =0. Thusm; = my.

If I =0 andh =1, thenit follows thatid = fd +d —k, thatis,(a — f)d =d — k. This
is a contradiction sincg cannot divided — k. If [ =1 andh = 0, one concludes as in the
previous case that ; = my.

fl=h=1,thenad+d— j= fd+d—k,thatis,(a — f)d = j — k. This implies that
d dividesj — k and this is a contradiction, sincelj #k<d—1. O

In the following two propositions, we desie explicitly a Grobner basis for the pre-
sentation ideal of Rees algebras of legsent ideals with inarasing and decreasing
differences sequence, already considered in Example 2.11.

Proposition 6.2. Let I be a lex-segment ideal iR. Suppose that its differences sequence
is such thab; <b;y1fori =1,...,d — 1. Then the set of elements

xT; — YT, i=1,....d,
T;Tj—1— Yo biT, 1Ty, i, jef{l,....d}),d>i>j>1
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form a Grébner basis off with respect to any term order such that the initial term of any
of the elements above is the term on the left side. Also, the Rees algébyas normal.

Proof. Let Q be the ideal generated by, i =1,...,d, andT;T;_1, i > j > 1. Since
the binomial relations form a universal Grobner basigiofto prove thatQ = in(H) it
suffices to prove that there are no relationg#nnvolving only monomials which are not
in Q. Note that such monomials are of the foxftty, y*T°Tf, ;. y*T} for somea, b, c.
Sincey (x* Té’) involves onlyx, it cannot be the term of an element &h. Moreover, if

“T” CT; isin H, then it is easy to see that=e¢ andi = j. From Lemma 6.1 it
follows that the given relations are a Grobner basigoNote that the initial terms of the
elements of the Grébner basis are square-free, thus by [St, 13.15] the Rees &gepra
isnormal. O

Proposition 6.3. Let L be a lex-segment ideal iR. Suppose that its differences sequence
issuch thab; > b; 1 fori =1,...,d — 1. Then the set of elements

xTi—yhiTi g, i=1,....d,
T;Tj—1—yoi=biT, 1Ty, i, jefl,....d), 1<i<j<d

form a Grébner basis off with respect to any term order such that the initial term of any
of the elements above is the term on the left.

Proof. Let Q be the ideal generated byf;, i =1,...,d, andT;Tj_1, 1<i <j<d.In
particular, T2 eQfori=1,...,d — 1. Thus the monomials which are not {n are the
ones of the formxa 7Y, y“TbT‘Te with 0 < j <d, 0< e < 1, and some, b, ¢. Using
Proposition 6.1 and arguing as |n Proposition 6.2, one concludeg@teain(H). O

It is easy to see that in general a lex-segment ideas in the proposition above is not
integrally closed, thu® (L) is not normal.

In the following theorem, we obtain the Groébner basis for the presentation ideal of the
Rees algebra of another sub-class of generic lex-segment ideal and then use it to produce
another class of normal Rees algebras.

Theorem 6.4. Let L be a generic lex-segment ideal misuch thatc = p; = 0. Then the
set of elements

xTi—yhiTi g, i=1,....d,
TiT; —y*ToTi4j, 1<i<j<d, 1<i+j<danda =a;+a; —aiyj,
TiT; — yPTiyj_aTs, 1<i<j<d,d<i+jandB=a; +a; — (aitj—a +aa)

form a Grobner basis fold with respect to any term order such that the initial term of
any of the elements in the above set is the term on the left. Also, the Rees &gébria
normal.
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Proof. Sincec = p1 =0, it follows from Theorem 5.5 that? = JL for J = (x4, y).
Let 5 denote the set of elements given in the statement of the theorem. We first show that
B is a Grobner basis faH .

Let Q be the ideal generated byf;, i =1,...,d andT;T;, 1<i < j <d. The mono-
mials which are notirQ are of the formx®y’T¢, y“Té’TdcT;’, yiTP with0 < j <d, 0<
i < d and some non-negative integerd, c, e. Then, as in the proof of Proposition 6.2, it
can easily be seen that(if) = Q and hences is a Grobner basis faf .

Now we prove thatR(I) is normal. SinceR(I) is a semi-group ring, it is enough to
prove that for any three monomiafsg, h € R(I), if for some integep, f” = g’h, then
h = hi’ for some monomiak; € R(I) (see [BH, 6.1.4]). LetS = R[Ty, ..., T4]. Then
R(I)=S/H. SinceB is a Grobner basis faif and inH) = Q, the set

x*yPT§, a,b,c>0,
0 = y“Té’T;Tj", O<j<d;ab,ce>0,
YyATE a,b>0; 0<i<d

1

form a monomial basis faf/ H. Note that any monomial if/ H will be a power of either
of the above forms. Lef, g, h € S/H be monomials such that

fP=g”h forsomep > 0. @)

Let f = x“beg for some integers, b, c. Then, from (7) and comparing the and
y degrees offr(f), ¥ (g) andy (h), we can conclude that bothandh can not contain
T; for j # 0. Write g = x9yP17. From (7), it follows thatai < a, b1 < b andc1 < c.
Thereforep = (x@~91yb=b17571)P. Henceh = hY, for hy = x4—a1yb=b1i™ct,

Now assume thatf = y“TgTjT; for some O< j < d and non-negative integers
a,b,c,e. If g = x“lybngl. Then comparing the-degrees, we get that; = 0. There-
fore g = y¥1 7,2, such thaby < a ande1 < b. Thereforeh = (y“*blTé’_”1 T;T)P. Hence
h = h{ for hy = y“—bng’clT;T;’. Supposeg = y“lTé’lT;lel for somei. Then again
from (7), it follows thati = j andh = A% for hy = y“—“nglleT;*”.

Let f = y“Tib for somea,b > 0 and 0< i < d. Then it is obvious from (7) thag and
h have to be of the same form. Thus, as in the previous cases, we concluble-thgtfor

somehs.
ThereforeS/H is normal and hencR(L) is hormal. O
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