153 research outputs found

    Separation of Time Scales in a Quantum Newton’s Cradle

    Get PDF
    We provide detailed modeling of the Bragg pulse used in quantum Newton’s-cradle-like settings or in Bragg spectroscopy experiments for strongly repulsive bosons in one dimension. We reconstruct the postpulse time evolution and study the time-dependent local density profile and momentum distribution by a combination of exact techniques. We further provide a variety of results for finite interaction strengths using a time-dependent Hartree-Fock analysis and bosonization-refermionization techniques. Our results display a clear separation of time scales between rapid and trap-insensitive relaxation immediately after the pulse, followed by slow in-trap periodic behavior

    Multiple Lines of Evidence for a Potentially Seismogenic Fault Along the Central-Apennine (Italy) Active Extensional Belt–An Unexpected Outcome of the MW6.5 Norcia 2016 Earthquake

    Get PDF
    The Apenninic chain, in central Italy, has been recently struck by the Norcia 2016 seismic sequence. Three mainshocks, in 2016, occurred on August 24 (MW6.0), October 26 (MW 5.9) and October 30 (MW6.5) along well-known late Quaternary active WSW-dipping normal faults. Coseismic fractures and hypocentral seismicity distribution are mostly associated with failure along the Mt Vettore-Mt Bove (VBF) fault. Nevertheless, following the October 26 shock, the aftershock spatial distribution suggests the activation of a source not previously mapped beyond the northern tip of the VBF system. In this area, a remarkable seismicity rate was observed also during 2017 and 2018, the most energetic event being the April 10, 2018 (MW4.6) normal fault earthquake. In this paper, we advance the hypothesis that the Norcia seismic sequence activated a previously unknown seismogenic source. We constrain its geometry and seismogenic behavior by exploiting: 1) morphometric analysis of high-resolution topographic data; 2) field geologic- and morphotectonic evidence within the context of long-term deformation constraints; 3) 3D seismological validation of fault activity, and 4) Coulomb stress transfer modeling. Our results support the existence of distributed and subtle deformation along normal fault segments related to an immature structure, the Pievebovigliana fault (PBF). The fault strikes in NNW-SSE direction, dips to SW and is in right-lateral en echelon setting with the VBF system. Its activation has been highlighted by most of the seismicity observed in the sector. The geometry and location are compatible with volumes of enhanced stress identified by Coulomb stress-transfer computations. Its reconstructed length (at least 13 km) is compatible with the occurrence of MW≥6.0 earthquakes in a sector heretofore characterized by low seismic activity. The evidence for PBF is a new observation associated with the Norcia 2016 seismic sequence and is consistent with the overall tectonic setting of the area. Its existence implies a northward extent of the intra-Apennine extensional domain and should be considered to address seismic hazard assessments in central Italy

    Macromolecular and electrical coupling between inner hair cells in the rodent cochlea

    Get PDF
    Inner hair cells (IHCs) are the primary receptors for hearing. They are housed in the cochlea and convey sound information to the brain via synapses with the auditory nerve. IHCs have been thought to be electrically and metabolically independent from each other. We report that, upon developmental maturation, in mice 30% of the IHCs are electrochemically coupled in ‘mini-syncytia’. This coupling permits transfer of fluorescently-labeled metabolites and macromolecular tracers. The membrane capacitance, Ca2+-current, and resting current increase with the number of dye-coupled IHCs. Dual voltage-clamp experiments substantiate low resistance electrical coupling. Pharmacology and tracer permeability rule out coupling by gap junctions and purinoceptors. 3D electron microscopy indicates instead that IHCs are coupled by membrane fusion sites. Consequently, depolarization of one IHC triggers presynaptic Ca2+-influx at active zones in the entire mini-syncytium. Based on our findings and modeling, we propose that IHC-mini-syncytia enhance sensitivity and reliability of cochlear sound encoding

    Excitons and charged excitons in semiconductor quantum wells

    Full text link
    A variational calculation of the ground-state energy of neutral excitons and of positively and negatively charged excitons (trions) confined in a single-quantum well is presented. We study the dependence of the correlation energy and of the binding energy on the well width and on the hole mass. The conditional probability distribution for positively and negatively charged excitons is obtained, providing information on the correlation and the charge distribution in the system. A comparison is made with available experimental data on trion binding energies in GaAs-, ZnSe-, and CdTe-based quantum well structures, which indicates that trions become localized with decreasing quantum well width.Comment: 9 pages, 11 figure

    Transport in out-of-equilibrium XXZ chains: Nonballistic behavior and correlation functions

    Get PDF
    We consider the nonequilibrium protocol where two semi-infinite gapped XXZ chains, initially prepared in different equilibrium states, are suddenly joint together. At large times, a generalized hydrodynamic description applies, according to which the system can locally be represented by space- and time- dependent stationary states. The magnetization displays an unusual behavior: depending on the initial state, its profile may exhibit abrupt jumps that can not be predicted directly from the standard hydrodynamic equations and which signal non-ballistic spin transport. We ascribe this phenomenon to the structure of the local conservation laws and make a prediction for the exact location of the jumps. We find that the jumps propagate at the velocities of the heaviest quasiparticles. By means of tDMRG simulations we show that our theory yields a complete description of the long-time steady profiles of conserved charges, currents, and local correlations

    Surgical resection is superior to TACE in the treatment of HCC in a well selected cohort of BCLC-B elderly patients—A retrospective observational study

    Get PDF
    Simple Summary Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Liver transplantation (LT) and surgical resection (SR) are currently the primary treatments with curative intent. Nevertheless, more than two-thirds of patients are elderly and, therefore, excluded from LT; while, according to the Barcelona Clinic Liver Cancer (BCLC) system, SR should only be offered to a small group of patients with early stage HCC. The identification in stage B of an intermediate subgroup of patients that fulfill the criteria for surgery may play an important role in the implementation of potentially curative treatments. Hepatocellular carcinoma (HCC) usually develops in cirrhotic liver, with high recurrence rates. However, considering its increasing detection in non-cirrhotic liver, the choice of treatment assumes particular relevance. This study aimed to investigate outcomes of patients among BCLC stages and enrolled for surgical resection (SR) according to a more complex evaluation, to establish its safety and efficacy. A total of 186 selected HCC patients (median age 73.2 yrs), submitted to SR between January 2005 and January 2021, were retrospectively analyzed. Of which, 166 were staged 0, A, B according to the BCLC system, while 20 with a single large tumor (>5 cm) were classified as stage AB. No perioperative mortality was recorded; complications occurred in 48 (25.80%) patients, and all but two were Clavien-Dindo grade I-II. Median follow-up was 9.2 years. Subsequently, 162 recurrent patients (87,1%) were selected for new treatments. Comparable overall survival rates (OS) were observed at 1, 3, 5, and 10 years in 0, A, B and AB stages (p = 0.2). Eventually, the BCLC-B group was matched to 40 BCLC-B patients treated (2015-2021) with TACE. Significant differences in baseline characteristics (p <0.0001) and in OS were observed at 1 and 3 years (p <0.0001); a significant difference was also observed in oncological outcomes, in terms of the absence, residual, or relapse of disease (p <0.05). Surgery might be a valid treatment in HCC for patients affected by chronic liver disease in a condition of compensation, up to BCLC-B stage. Surgical indication for liver resection in case of HCC should be extensively revised

    From the sinh-Gordon field theory to the one-dimensional Bose gas: exact local correlations and full counting statistics

    Get PDF
    We derive exact formulas for the expectation value of local observables in a one-dimensional gas of bosons with point-wise repulsive interactions (Lieb-Liniger model). Starting from a recently conjectured expression for the expectation value of vertex operators in the sinh-Gordon field theory, we derive explicit analytic expressions for the one-point K-body correlation functions \u27e8(\u3a8\u2020)K(\u3a8)K\u27e9 in the Lieb-Liniger gas, for arbitrary integer K. These are valid for all excited states in the thermodynamic limit, including thermal states, generalized Gibbs ensembles and non-equilibrium steady states arising in transport settings. Our formulas display several physically interesting applications: most prominently, they allow us to compute the full counting statistics for the particle-number fluctuations in a short interval. Furthermore, combining our findings with the recently introduced generalized hydrodynamics, we are able to study multi-point correlation functions at the Eulerian scale in non-homogeneous settings. Our results complement previous studies in the literature and provide a full solution to the problem of computing one-point functions in the Lieb Liniger model
    corecore