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We provide detailed modeling of the Bragg pulse used in quantum Newton’s-cradle-like settings or in
Bragg spectroscopy experiments for strongly repulsive bosons in one dimension. We reconstruct the
postpulse time evolution and study the time-dependent local density profile and momentum distribution by
a combination of exact techniques. We further provide a variety of results for finite interaction strengths
using a time-dependent Hartree-Fock analysis and bosonization-refermionization techniques. Our results
display a clear separation of time scales between rapid and trap-insensitive relaxation immediately after the

pulse, followed by slow in-trap periodic behavior.
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The study of many-body quantum physics has recently
been transformed by progress achieved in experiments on
ultracold atoms [1]. The context of one-dimensional (1D)
bosonic gases provides a particularly fertile ground for
investigating physics beyond traditional paradigms [2],
with concepts such as Luttinger liquids and integrability
[3] playing a primary role.

One of the main probes of cold gases is Bragg spectros-
copy [4-6], which consists in applying a pulsed mono-
chromatic laser grating onto the gas, thereby creating
excitations at (multiples of) the recoil momentum gq.
In [7,8], a two-pulse sequence was optimized to populate
the first £¢ momentum satellites of a Bose-Einstein con-
densate. The theoretical description of this sequence relied
on a two-state model where many-body dynamics were not
included. In 1D, however, many-body effects are inescap-
able. One of the fundamental models in this context is the
Lieb-Liniger (LL) gas [9] of d-interacting bosons. This
model is relevant to the description of experiments [10],
most prominently the quantum Newton’s cradle experiment
[11], in which a Bragg pulse is used to initiate oscillations.
Bragg spectroscopy has also recently been used to inves-
tigate correlated 1D Bose gases of rubidium [12] and cesium
[13], where heating resulting from the Bragg pulse was
measured and matched using linear response in the Lieb-
Liniger gas [14].

Our main objective is to model the effects of Bragg
pulses for strongly correlated 1D Bose gases, from first
principles, without approximation (i.e., beyond linear
response), for experimentally relevant setups. We study
instantaneous pulses of varying amplitude A and wave
vector ¢ via their effect on physical observables: the time-
dependent local density of the gas and the experimentally
more accessible momentum distribution function (MDF).
We will first focus on the Tonks-Girardeau (TG) limit
[15—17] of hard-core bosons both on a periodic interval and
in a harmonic trap [18-26], and then, significantly, study
finite interaction effects.
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Modeling Bragg pulses.—We model a Bragg pulse as a
one-body potential V(x) = V,cos(gx) coupling to the
density p(x) = W'(x)¥(x), where the Bose fields
obey the canonical equal-time commutation relations,
[¥(x), U7 (y)] = 8(x — y). For a general Bragg pulse the
gas is perturbed for a finite duration 7. We will, however,
consider the regime where the motion of the particles
during the pulse can be neglected (the Raman-Nath limit),
also known as a Kapitza-Dirac pulse [27,28]. Taking the
limit 7y — O while keeping A = VT, finite, the Bragg
pulse operator Uy is given by

Ug(q.A) :exp(—iA/dxcos(qx)\@*(x)@'(x)), (1)

where we have set 7 = 1. The action of the instantaneous
pulse on a ground state |pgg) generates the initial state
of a quantum quench [29-31]. Typical experimental pulses
[11-13,32] correspond to Bragg momentum ¢ ~ 2zn and
A ~ 1, where n is the mean density.

The postpulse time evolution is driven by the LL model
of interacting bosons

N o

B == 22m8x2+ ¢ Z @)

1<i<j<N

either on a ring with periodic boundary conditions or in a
harmonic trap with Vi, (x) = 3mw?x*. Throughout the
Letter, all data is produced with m = 1.

Hard-core limit.—We start by considering the hard-core
limit. In this limit the bosonic many-body wave function
can be related through the Fermi-Bose (FB) mapping [16]
to the many-body wave function of free fermions
wp(xst) = [[i<icjevsen(x; — xj)wr(x;t),  where x =
{x;}}_, and yp(x;7) is the usual Slater determinant of
the free single-particle (SP) wave functions, yp(x;t) =
dety[w;(x;;1)]/vV/N!. Following [19,24,26], the bosonic

© 2016 American Physical Society
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one-body density matrix and thus the MDF can be
computed efficiently in terms of a single determinant
involving the time-dependent fermionic SP states.

In the hard-core limit we will consider two geometries: a
ring geometry with no external potential and an infinite line
in the presence of a parabolic trap. For the former, our
ground state consists of SP plane waves, on which the
Bragg pulse imprints a cosine phase due to the one-body
potential,

. .
W](x, = 0) = ﬁe—lAcos(qx)e_M?Sx’ (3)

with ground-state rapidities {475 = (2z/L)[—(N +1)/2 +
JJYY., forming a Fermi sea with Fermi momentum
Ar = zn. Note that the Bragg momentum is quantized
due to the periodic boundary conditions: ¢ = (2z/L)n,
with n, € N. Expanding Eq. (3) in plane waves, the time-
dependent SP wave functions after the Bragg pulse yield

I(—iA)

(x 1) = -~ Lp(=i4)
v PR

e—i(A,--%-ﬂq)xe—1'(/1j-ﬁ-ﬂq)zt/2m7 (4)

with 74(z) the modified Bessel function of the first kind.

The generalized Gibbs ensemble (GGE) [30,33] and the
quench action (QA) approach [34,35] enable the study of
the Bragg pulsed system (on a ring) in the thermodynamic
limit (N — oo with N/L fixed). The GGE can be con-
structed using the infinite number of conserved charges
{0, o, provided by the integrability of the LL model,

with O, = 2mH and eigenvalues Q,(A) = Z;":l A5 asso-
ciated to a Bethe state [A) = |4, ..., 4y). The expectation
values of the charges on the initial postpulse state can be
computed using the matrix elements for the Bragg pulse

between two Bethe states |A) and |u) [36], given by

(nUp(q.A)[2)

x = dety [l (<iA)3, ] (5)

where we defined 5/({1;2 = O(i—uwmodg.0- The GGE logic

[30,33] then requires the expectation values of all charges
to be reproduced by the equilibrated postpulse system,
described by a density of rapidities p;’4(4), i..,

. 1 A~ © S a
tima - (g0 Qulva) = [ a0 (6)

for all @ € N. This leads to the stationary-state distribution
[37,38]
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FIG. 1. Time evolution of the density after a Bragg pulse with
g = 3mand A = 1.5, computed by (a) the FB mapping and (b) the
QA approach. The relative differences between the two results
due to finite-size effects are less than 0.4%.

where 0 is the Heaviside step function. The saddle-point
distribution is a sum of copies of the ground-state density
of rapidities, pgs(4) = (1/27)[0(A + Ax) — O(4 — Ap)],
shifted by multiples of ¢ and weighted by the modified
Bessel functions. This form of the stationary state is
consistent with the QA approach [39], which furthermore
provides access to the time evolution of local observables
by summing over particle-hole excitations in the vicinity of
pffA(/l) [34,35,40].

The time-dependent density of the hard-core gas in the
thermodynamic limit can be obtained via the QA approach
or with the FB mapping. Interestingly, one can obtain the
identical result from the noninteracting limit of the
Tomonaga-Luttinger model with a quadratic band-
curvature term. The nonlinear Luttinger liquid theory
(NLL) [41,42] result for finite interactions reads [43]

2
(Ple1)) = n+VES Jj (—NEA sin@>
2m*
p#0
sin(fqu,t)

x cos(figx) paiin (8)
with J4(z) the Bessel function of the first kind. Here, K is
the Luttinger parameter, v, the sound velocity, and m* the
renormalized effective mass. Surprisingly, the noninteract-
ing limit with K = 1, v, = A/m, and m* = m, reproduces
the exact TG result. The validity of Eq. (8) for finite
interactions is discussed in the last section of this Letter. We
compare the TG result against finite-size FB computations
for N = 50 in Fig. 1 and observe relative differences of the
order of 0.4% due to finite-size effects. In the Raman-Nath
limit, the postpulse density at t = 0 is unaltered from the
flat ground-state profile. A sharp density profile then
develops, mimicking the one-body cosine potential, fol-
lowed by relaxation back to a flat profile at time
scales t ~ m/qip = (quv,)~".

225302-2
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FIG. 2. Time evolution of the MDF after a Bragg pulse with
q = 37 and A = 1.4, computed with the QA approach (left) and
the FB mapping (right). Because the FB mapping treats a finite
system (N = 50) the momenta are quantized, causing less-
pronounced peaks for short times. All other results are in
excellent agreement with the QA computations.

The QA approach also provides access to the time
evolution of the MDF [46,47]. The result is plotted in
Fig. 2 along with the FB result for N = 50. Except for minor
disagreements in the sharp peaks due to finite-size effects,
the large-system-size dynamics after the Bragg pulse is again
well captured by a N = 50 FB mapping. At t = 0, one can
show that the MDF (for any value of c) is simply a sum of
copies of the ground-state MDF [48], with a small-k
divergence (7i(k))gs ~ k"> in the TG limit, centered
around multiples of ¢. Similar to the initial MDF, the
late-time distribution behaves like a superposition of inde-
pendent peaks shifted to multiples of g, yielding a character-
istic ghostlike shape [11]. The width of each satellite shows
no dependence on the value of ¢, and is only influenced by
the choice of A [49]. Since in the limit of A — 0 the MDF
reduces to the ground-state time-independent distribution,
the broadening can be ascribed to interactions between
particles belonging to different satellites.

Next, we will use the FB mapping to investigate how
these observations translate to the more experimentally
relevant geometry of a harmonic trapping potential, with
the Hamiltonian H,, = Hyp + Y~ | me’x} and o the
trapping frequency. The ground-state SP harmonic oscil-
lator wave functions are given by

) = (N pemo g (Jmar), (9)
RV e

for j=0,...,N—1, with H;(x) denoting the Hermite

polynomials. Using the propagator for the quantum har-

monic oscillator [50], we compute the time evolution of the

SP wave functions [51],

l//j(x; 1) = Z Iﬂ(—iA)e‘iﬁqcos(wf)[x+(ﬂq/2ma})sin(wt)]
p=-

pq . —iw(j
) ¢ iw j+1/2)l‘ 10
Xy [x + . sin(wt) | e (10)
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FIG. 3. The time evolution of the density (top) and MDF
(bottom) in the trap, computed with the FB mapping for N = 50,
w=10/N, A=1.5, and ¢ = 3x.

The SP wave functions are periodic in time with period
27 /w, which is reflected in observables such as the density
and the MDF. This periodicity is expected to be broken by
finite-c interactions and anharmonicities in the trapping
potential. The time evolution of the density and the MDF
during one period is shown in Fig. 3, where the contribu-
tions from particles belonging to different satellites are
clearly distinguishable. During the initial stages of relax-
ation (and around multiples of t = z/w) the density shows
strong oscillations and the initially sharply peaked MDF
relaxes rapidly to a broadened shape. This prerelaxation is
well separated from the trap-induced collective periodic
motion, suggesting that it is governed by the same physics
as relaxation on a ring.

In Fig. 4 the density at early stages in the oscillation
cycle is compared to that on a ring, the latter being
supplemented by a local density approximation (LDA)
to account for the classical expansion of the gas in the trap
[52,53]. The initial density profile is accurately reproduced
by the LDA, except for small differences near the edges
originating from gradients in the local density not
accounted for within the LDA [54-57]. Note, however,
that these differences do not stay confined to the edges and
propagate towards the center as time progresses.

The short-time MDF in the trap and ring geometry is
shown in Fig. 5 up to t = 0.015z/w. The initial distribu-
tions are nearly identical, after which the MDFs dephase
in a similar fashion to a (pre)relaxed ghostlike shape.
The strong similarities can be attributed to the short-range
correlations characterizing the postquench steady state.

225302-3
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FIG. 4. Time evolution of the density in a trap, computed with
(a) the FB mapping for N = 50 particles and (b) the QA approach
on a ring with a LDA accounting for the trap. The difference
between the two results is shown in (c). The Bragg pulse
parameters are set to A = 1.5 and ¢ = 7 with @ = 10/N.

Large-distance effects due to the trap geometry lead to
discrepancies only at low momenta. The time scale asso-
ciated to this (pre)relaxation is estimated to be the time it
takes for a boson traveling with the speed of sound to
traverse one density oscillation induced by the Bragg pulse,
t ~2r/qv,. Considering conditions similar to the Newton’s
cradle experiment, we estimate the short time scale to be of
the order of 10 us. This estimate is of the same order of
magnitude as the pulse duration used in [11], suggesting
that interaction effects can be important for longer pulses.
This will be treated in future publications.

Finite interactions.—We now extend our results to finite
interactions by considering the dual fermionic model to
Eq. (2) [58-60],

N 2
1 0 1
Hp=-S ——
F ;2max$ m%c

Using a self-consistent time-dependent Hartree-Fock
(TDHF) approximation [62,63], we have performed
finite-c calculations of the density and MDF, shown in
Figs. 6(a), 6(c), and 6(d). The equilibrium Hartree-Fock
computation yields an effective mass of the plane-wave
quasiparticles given by m* =m/(1 —2n/mc) [62,63],
suggesting that the out-of-equilibrium finite-c¢ results
can be rescaled according to t — (1 —2n/mc), to pro-
duce the same time-dependent behavior as in the ¢ — oo
limit. This is confirmed by the rescaled results shown in
Fig. 6(b). Furthermore, the density at x = 0 shows an
enhancement of the high-density regions for decreasing c,
consistent with a model for attractive fermions. The NLL
result of Eq. (8) reproduces the correct time scaling for
large values of ¢, but is unable to account for the increased
density oscillations. This discrepancy can be attributed
to the neglected irrelevant operators which cannot be
justified by a renormalization group argument in
out-of-equilibrium settings. In Fig. 6(c) the relaxation
of the MDF at k = 0, g, 2¢q shows a delay in relaxation

3 8-x). (1)

1<i<j<N

0.06
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FIG.5. Time evolution of the MDF for the trap geometry (solid
lines) and the ring geometry (dashed lines), obtained with the FB
mapping for N = 50 particles. The trapping frequency is set to
® = 10/N, and we used A = 1.5 and ¢ = 3x. The time step At is
set to 7/800w.

consistent with a reduced sound velocity v, = zn/m
(1-2n/mc+---). Finally, the relaxed MDF in
Fig. 6(d) depicts increasingly condensed satellites for
smaller ¢, as is expected from bosons with decreasing
repulsive interactions.

Conclusion.—We have developed a theoretical descrip-
tion of the Bragg pulse for one-dimensional Bose gases and
shown that the time evolution of physical observables for a
Bragg pulsed Lieb-Liniger gas in a trap is characterized by
two well-separated time scales. The shortest time scale is
dominated by the trap-insensitive contact interactions and
causes a substantial broadening of the momentum distri-
bution well before the collective motion due to the presence
of the trap sets in. Our work can be extended to include
finite interaction effects in harmonic traps [64], and it opens

0.06

0.04 -

(k)

0.02+

0.0 0.00
0.00 0.05 0.10 0.15 0.20 -9z -6z -3z 0 3z 6z I«
t k

FIG. 6. Finite-c results using TDHF for the ring geometry. (a),
(b) Time evolution of the density at x = 0 for N = 50, A = 1, and
qg =2n. In (b) the results of (a) are rescaled according to
t = t(1 —2n/mc). (c) Time evolution of the MDF at k =0,
q,2q for N =50, A = 1.3, and ¢ = 37 and (d) the relaxed MDF
at t = 0.4.
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up the possibility to study the influence of interactions on
more general pulse protocols and to incorporate finite-
temperature effects.
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