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For a decade the fate of a one-dimensional gas of interacting bosons in an external trapping potential
remained mysterious. We here show that whenever the underlying integrability of the gas is broken by the
presence of the external potential, the inevitable diffusive rearrangements between the quasiparticles,
quantified by the diffusion constants of the gas, eventually lead the system to thermalize at late times. We
show that the full thermalizing dynamics can be described by the generalized hydrodynamics with diffusion
and force terms, and we compare these predictions to numerical simulations. Finally, we provide an
explanation for the slow thermalization rates observed in numerical and experimental settings: the
hydrodynamics of integrable models is characterized by a continuity of modes, which can have arbitrarily
small diffusion coefficients. As a consequence, the approach to thermalization can display prethermal
plateau and relaxation dynamics with long polynomial finite-time corrections.

DOI: 10.1103/PhysRevLett.125.240604

In the past two decades, low-temperature gases of
bosonic or fermionic atoms emerged as the best experi-
mental platform from which to study many-body pheno-
mena and probe their nonequilibrium dynamics [1–3]. A
great deal of attention has been dedicated to the problem of
thermalization in isolated systems, such as a single gas of
bosonic atoms interacting via contact repulsion. The
experiment in 2006 dubbed the “quantum Newton cradle”
[4] represented a turning point. The apparent lack of
thermalization at late times for a nonequilibrium one-
dimensional cold atomic gas in an external trap started
numerous research paths that focused on the role of the
underlying integrability in the isolated dynamics. It was
then later clarified that integrable models do not thermalize
to standard Gibbs ensembles but to generalized Gibbs
ensembles (GGE) [1,5,6] where entropy is maximized
given the constraints of all local and quasilocal conserved
quantities. As the integrability is weakly broken by the
external trap, one therefore expects to cross over from a fast
relaxation to a generalized Gibbs state to a slow prethermal
decay to the final thermal ensemble. In the past years, the
study of prethermalization dynamics has received many
contributions, and, for homogeneous systems, a quite
comprehensive understanding has now been achieved
[7–17]. However, a full description of the (pre) thermal-
ization mechanism in inhomogeneous systems is still
lacking. While a recent experimental work showed that
multiple one-dimensional gases coupled to each other or in
which transitions to higher dimension are allowed do
indeed thermalize at late times [18,19], the fate of a

single isolated one-dimensional gas remains to be
understood.
In this Letter, we show that, in the presence of an external

force and diffusive spreading, a single gas described by an
integrable Hamiltonian and an external trapping potential
does thermalize. It does so due to the interplay of the
external force that breaks integrability and the diffusion
spreading that redistributes the quasiparticle momenta and
increases the local thermodynamic entropy. Previous works
have studied the hydrodynamics of an integrable gas in the
presence of the external force but without accounting for
diffusive terms [20–24]. Here, we show that diffusive
corrections play an essential role in the late-time dynamics.
Lieb-Liniger gas in an external potential.—Our model of

interest is the Lieb-Liniger (LL) model [25] for a gas of
bosons interacting with contact repulsion. The Hamiltonian
is given by

ĤLL¼
Z

dx

�
ℏ2∂xψ

†ðxÞ∂xψðxÞ
2m

þcψ†ðxÞψ†ðxÞψðxÞψðxÞ
�
;

with corresponding bosonic operators ½ψðxÞ;ψ†ðyÞ� ¼
δðx − yÞ. In the following, we set the mass of the bosons
such that ℏ2=2m ¼ 1. The model is known to describe
state-of-the-art cold atom experiments [4,26–33] and also
to be integrable [25]. As a consequence, all physical initial
states [34–39] eventually relax to a GGE density matrix

ϱ̂ ∼ e−
P

j
Q̂jβj , where the set of Lagrange multipliers βj is

fixed by the initial condition.
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The large scale dynamics of a one dimensional bose gas
can be accurately described via the so-called generalized
hydrodynamics introduced in the past years [40,41],
and the resulting predictions have even received an exper-
imental confirmation [32]. In contrast to standard hydro-
dynamics, generalized hydrodynamics is built on the
infinite number of local and quasilocal conserved quantities
Q̂j ¼

R
dxq̂jðxÞ characterizing integrable systems. Equi-

valently, each stationary state of the system within fluid
cells of the hydrodynamics can be described by a set of
stable quasiparticles with density ρθ per unit rapidity θ
and per unit length. Within a scattering theory descrip-
tion of the state, a quasiparticle at rapidity θ is identified
with an asymptotic particle of velocity θ (see, e.g., [42]).
The quantity ρθ is in a one-to-one correspondence with
a set of expectation values of conserved quantities:R
dθρθhj;θ ¼ hq̂ji, with hj;θ the single-particle eigenvalues

of the quasiparticle with rapidity θ.
Because of the interactions leading to scattering phases,

the effective physical energy and momentum of quasipar-
ticles depend nontrivially on the local thermodynamic
state. Given the derivative of the scattering phase between
two quasiparticles with different rapidities, Tθ;α, any
single-particle function hj;θ is dressed via the linear trans-
formation hdrj ¼ ð1 − TnÞ−1 · h, with nθ ¼ 2πρθ=ðk0θÞ the
fermionic filling function and ð1 − TnÞθ;α ¼ δθ;α − Tθ;αnα
the dressing matrix (here and in the following we denote
the derivative with respect to rapidities as ∂θhθ ¼ h0θ).
The effective quasiparticle momentum kθ and energy εθ
are obtained by integrating the dressed derivatives: k0 ¼
ð1 − TnÞ−1 · ðkbareÞ0 (and similarly for the energy). For the
LL model, Tθ;α ¼ 2c=½ðθ − αÞ2 þ c2�, and ðkbareθ Þ0 ¼ 1,
ðεbareθ Þ0 ¼ 2θ.
Without external forces, the large scale evolution of

any local density of conserved quantities can be written
in terms of the evolution of the local density of quasi-
particles ρθðx; tÞ. This involves a convective (Euler scale)
and a diffusive part [43–47], and it reads ∂tρθ ¼
−∂xðveffθ ρθÞ þ ∂xðDα

θ∂xραÞ, where the repeated rapidity
index α is summed over (summation over repeated indices
is assumed in what follows). The effective velocity veffθ ¼
ε0θ=k

0
θ gives the convective motion of densities [48,49],

while the nondiagonal diffusion kernel, which vanishes in
noninteracting systems [50], describes both a diffusive
spreading of the quasiparticle motion and a redistribution of
quasiparticle velocities (see below). Both quantities are a
nonlinear functional of the densities ρθðx; tÞ fixed by the
equation of state and by the explicit form of the diffusion
kernel.
The effect of an external trap is described by the

Hamiltonian

Ĥtrap ¼ ĤLL þ V̂ ð1Þ
with the potential V̂ ¼ R

dxVðxÞq̂0ðxÞ and the particle
density q̂0ðxÞ ¼ ψ†ðxÞψðxÞ. The contribution of the

trapping potential to the dynamics of the quasiparticle
densities can be treated perturbatively in the degree of
smoothness of the external potential VðxÞ. It was first
shown in Ref. [20] that, at the Euler scale, this amounts to
adding the simple force term ½∂xVðxÞ�∂θρθ. We here claim
that the addition of this single term also gives the correct
hydrodynamic equation up to diffusive scales:

∂tρθ ¼ −∂xðveffθ ρθÞ þ ∂xðDα
θ∂xραÞ þ ð∂xVðxÞÞ∂θρθ ð2Þ

That is, this equation holds up to order OðL−3Þ corrections,
with L the minimal length of spatial inhomogeneity of
the gas.
From a scaling analysis, at this diffusive order possible

corrections to Eq. (2) could come from three different
sources: (i) the second derivative of the potential ∂2

xVðxÞ;
(ii) mixed derivatives, ∂xVðxÞ∂xρα; and (iii) a second power
first derivative of the potential ½∂xVðxÞ�2. We now argue that
none of these terms contributes. First, we recall that the
definitions of densities of the charges q̂jðxÞ are ambiguous
by the addition of total derivative terms, and as shown
in [51], we can make use of this freedom to enforce PT
(parity and time) symmetry.With PTsymmetry,we can argue
that terms proportional to ∂2

xV are excluded in Eq. (2).
Specifically, consider the Heisenberg time-evolution equa-
tion for any conserved density q̂jðxÞ. In order to study their
hydrodynamic evolution, we “Taylor expand” the potential
around each point y, VðxÞ ¼ VðyÞ þ ðx − yÞ∂yVðyÞ þ
ðx − yÞ2∂2

yVðyÞ=2þ � � �. We argue that the latter quadratic
term does not contribute to Eq. (2), as

R
dxðx − yÞ2

½q̂0ðxÞ; q̂jðyÞ� has a vanishing expectation on any stationary
state by PT symmetry. Second, no mixed derivatives appear
as the charge density q̂0ðxÞ is “ultralocal.” That is, in terms
of the field ψðxÞ, q̂0ðxÞ does not contain any derivative, and,
as a consequence, the number of particles does not generate
any flow in space ½R dxq̂0ðxÞ; q̂iðyÞ� ¼ 0. A change of flow
due to a spatial variation of the local Hamiltonian would
affect the diffusion kernel, this being the only source of the
mixed derivatives. Because of ultralocality, no such change
occurs. Third, there may be additional Fermi golden rule
terms [13–15] leading to additional thermalization effects.
These arise from the second-order terms in the perturbation
for the evolution of the densities q̂jðyÞ. In our case, at given
position y, the leading integrability-breaking perturbation is
∂yVðyÞB̂y, where B̂y ¼

R
dxðx − yÞq̂0ðxÞ. This gives Fermi

golden rule corrections to the evolution of qjðyÞ proportional
to ð∂yVÞ2

R
t
−t ds½B̂yðsÞ; ½B̂yðtÞ; q̂jðy; tÞ�� to be evaluated in a

stationary, homogeneous state at position y. In the present
case, we recognize B̂y as a Galilean boost and therefore
dB̂yðsÞ=ds ¼ P̂, the total conserved momentum. Thus, after
integration by parts, we have, up to terms that vanish at large
t,

R
t
−t dssh½P̂; � � ��i ¼ 0, vanishing on any homogeneous

local state. Any integrable model with these properties in
a trapping potential is expected to obey Eq. (2), which is the
focus of this Letter. For more details, see [52]. The general
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case, along with a more rigorous demonstration, will be
addressed in an upcoming publication.
Thermalization via diffusion.—Canonical thermalization

to a Gibbs ensemble can only be reached at late times by
breaking the conservation of all local conserved quantities,
except for total energy and total particle number, and
by ensuring that dynamics is irreversible. It can be shown
that Gibbs ensembles are stationary solutions of the purely
convective flow, the first and third terms on the right-
hand side in Eq. (2) [52]. However, such an evolution is
completely reversible [21,53] and does not generate
entropy. In practice, the root density ρθ is roughened by
the convective evolution and cannot relax. Relaxation may
happen in a weak sense as local observables may become
stationary [21,53] [see also Fig. 1(d)]. The determination
of such a steady state is a nontrivial task. Physically,
however, diffusion occurs, which modifies this picture.
Diffusion, the second term in Eq. (2), increases entropy
while preserving all conserved quantities. We will now
show that the combined effect of diffusion together with the
inhomogeneous potential VðxÞ induces thermalization.
In order to proceed, we shall first write down the form

of the diffusion matrix D. This is given by D ¼ R−1 eDR,
where eDθ;α ¼ δθ;α

R
dγðk0γ=k0αÞ2Wγ;α −Wθ;α, with the

matrix of dressings Rθ;α ¼ 2πðδθ;α − nθTθ;αÞ=k0θ with
jump rates given by Wθ;α ¼ 1=2ð2πTdr

θ;α=k
0
θÞ2ρθð1 − nθÞ

jveffθ − veffα j. The only conserved quantity Tdr is given
in terms of the bare one by Tdr ¼ ð1 − TnÞ−1 · T. The
kernel eDθ;α has the structure of a Markov matrix, and it
describes the emergent stochastic process of random
momentum exchanges between quasiparticles with jump
rates given by Wθ;α and where the only conserved quantity
in the process is the total quasiparticle momentum, asR
dθDα

θ ¼ 1θDα
θ ¼ 0, as it follows from 1θ½R−1�θ;α ¼

ðk0αÞ2=ð2πÞ. The simple fact that the unit vector 1θ is the
only zero eigenvector of the diffusion operator D ensures
that the dynamics induced by Eq. (2) with V 0ðxÞ ≠ 0
relaxes to a thermal ensemble. Namely, the large time
limit of ρθðx; tÞ in Eq. (2) is such that, for any local operator
Ô acting at position x, whose average is, by the hydro-
dynamic approximation, hÔðx; tÞi ¼ R

dθρθðx; tÞhOθ for

some functional hÔθ , we have limt→∞hÔðx;tÞi¼Tr½Ôϱ̂th�,
with the thermal density matrix ϱ̂th∝ exp½−βðĤtrap−μQ̂0Þ�.
The final inverse temperature β and chemical potential
μ are fixed by the initial total number of particles and
energy.
To prove this fact, one first notices that the total

density N ¼ R
dx

R
dθρθðx; tÞ and total energy E ¼ R

dxR
dθρθðx; tÞ½εbareθ þ VðxÞ� are preserved by the evolution,

Eq. (2). The latter can be easily shown using that
veffθ ¼ ðk0θÞ−1½ð1 − TnÞ−1ðεbareÞ0�θ. Then one proceeds to
notice that the diffusive term in Eq. (2) produces an
increase of the total thermodynamic entropy of the state

S ¼ R
dx

P
j βjðxÞhq̂jðxÞi − f, with f being the total free

energy. The entropy growth on a generic GGE state was
found in [42,51], and it can be written as

dSðtÞ
dt

¼ 1

2

Z
dx

X
j;k

½∂xβjðxÞ�hθjðDCÞθ;αhαk ½∂xβkðxÞ�; ð3Þ

with the matrix of susceptibilities ½RCR−1�θ;α ¼
δθ;αρθð1 − nθÞ. As the only zero eigenvalue of the D
operator is the unit vector, the only states where entropy
does not increase are the ones where all βj>0 are constant
in space, namely any GGE state with an arbitrary spa-
tially modulated chemical potential ∼ exp ½−P

m
j¼1 Q̂jβj−R

dxμ̃ðxÞq̂0ðxÞ�, with all βj constants in space. However, for
m > 1 and generic μ̃ðxÞ, these states are not invariant under
the convective part of Eq. (2) when VðxÞ ≠ 0, and therefore
they are not stationary. We conclude therefore that thermal
states with μ̃ ¼ μ − VðxÞ and β1 ¼ β are the only stationary
solutions of Eq. (2) (see [52] for more details).
Results in the Lieb-Liniger gas.—Equation (2) is a

typical convection-diffusion equation. A common way to
numerically solve these types of equations is the Crank-
Nicolson method [54] [52]. The role of the diffusion term in
Eq. (2) is to smooth the functions ρθðx; tÞ in the x space
and, primarily, in the θ space (see Fig. 1), a fact that was
previously noticed in [55] (see also [21,22]).
We first study the following nonequilibrium settings:

we consider periodic boundary conditions in x ∈ ½0; L�.
We prepare the gas in the thermal state with inverse
temperature β ¼ c ¼ 0.3 and with chemical potential given

(a) (b)

(d)(c)

FIG. 1. Left: (a,c) quasiparticle density ρθðx; tÞ at t ¼ L
for a Lieb-Liniger gas, Eq. (1), inside the trap VðxÞ ¼
1=2ð1 − cos 2πx=LÞ, in a circle with length L ¼ 1 (a) and
L ¼ 25.6, (c), initialized at finite temperature equilibrium in
the potential V0ðxÞ ¼ 2 sinð2πx=LÞ (see text for the values of
the other parameters). Right: Log plot of the thermodynamic
entropy density SðtÞ=L (b) converging to the thermal entropy
for the given quench and of the integrated correlator,
(d)⟪jψ4j⟫ ¼ R

L
0 dxhðψ†Þ2ðψÞ2i=L. The inset is a log plot show-

ing the approach to the thermal value at times of order L2.
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by μ − V0ðxÞ, with μ ¼ 2.5 and V0 ¼ 2 sinð2πx=LÞ, such
that hψ†ψi ∼Oð1Þ, namely the effective coupling γðxÞ ¼
c=hψ†ψi ∼Oð10−1Þ for x ∈ ½0; L�. At t ¼ 0þ, we switch on
the potential VðxÞ ¼ 1=2½1 − cosð2πx=LÞ�. In Eq. (2), one
is free to rescale x → xL and t → tL. This way the
convective and the force term remain unaltered, but the
diffusive part is rescaled by a factor 1=L. In Fig. 1, we show
the increase of the total entropy after the quench in the
cases L ¼ 1 and L ¼ 25.6. For the larger value of L indeed
we observe a prethermal plateau for the evolution of
local observables (see Fig. 1). As discussed above, such
a plateau corresponds to the stationary state attained by the
purely convective evolution. The slow drift can be inter-
preted as the effect of the spatial imbalance of modes
with small diffusion constants, which produces a diffusive
small entropy increase in Eq. (3) and which is even more
suppressed by larger values of L. Indeed, Fig. 1 clearly
shows how short-intermediate timescales t ∼ L are domi-
nated by the convective dynamics, while diffusive thermal-
izing dynamics takes place at scales t ∼ L2. Such a
“prethermal plateau” was indeed also observed in numeri-
cal simulation of a trapped hard-rods gas in [22], and it is
here therefore theoretically explained.
We then proceed to study a nonequilibrium setting that is

more relevant for cold atoms experiments (see Fig. 2).
We prepare a gas of bosons in a double-well potential as
in Ref. [32]. We consider an initial gas with c ¼ 0.5 at
thermal equilibrium with temperature T ¼ 10 and μ ¼ 4
inside the double-well trap V0ðxÞ ¼ x4 − 4x2 þ x3=10. We
then release the gas in the harmonic trap VðxÞ ¼ ωx2=2
with ω ¼ 4. The initial density and temperature at the
minima of the trap V0ðxÞ is such that γ ∼Oð10−2Þ and
T=Td ∼Oð10−1Þ, with quantum degeneracy temperature
[56] Td ¼ hψ†ψi2 (in units ℏ2=2m ¼ 1 and Boltzmann’s

constant kB ¼ 1), in order to be within typical experimental
regimes.
By simulating the dynamics of the gas by Eq. (2), we

find that diffusion eventually suppresses the oscillations of
the gas inside the harmonic trap and global entropy reaches
thermal equilibrium after around 50 oscillations inside the
trap, much longer than the accessible experimental times in
atom chips [32].
Finally, we stress that diffusive terms in Eq. (2) are

roughly proportional to γ−2nθð1 − nθÞ and therefore ther-
malization times, which grow as the inverse of this, can
become arbitrarily large as interaction γ and/or inverse
temperature β are increased, as for example in the exper-
imental setting in [4].
Numerical simulations in the classical limit.—

Continuous quantum models are notoriously hard to
simulate with state-of-the-art tensor network techniques
despite recent progress [57–59]; methods based on the
Bethe ansatz reach a higher number of particles but are still
limited [45]. We therefore benchmark the hydrodynamic
equation, Eq. (2), with the classical field limit of the Lieb-
Liniger gas, valid in the high mode occupation limit. Given
the rescaling of the coupling c ¼ ℏ, inverse temperature
β ¼ βNLSℏ, and the mass such that ℏ2=ð2mÞ ¼ 1, in the
limit ℏ → 0 the quantum system is well described by the
classical nonlinear Schrödinger model (NLS) [60] (see also
[61–63]) initialized in an inhomogeneous thermal ensemble
and evolving with deterministic equations of motion. Here,
extensive numerical simulations can be carried out [64–69].
We numerically solve Eq. (2) for the Lieb-Liniger gas, and
we extrapolated the behavior at ℏ ¼ 0 to compare with
numerical Monte Carlo simulations of the NLS equation
[70] (see Fig. 3). We consider the same quench of Fig. 1

(a) (b)

(d)(c)

FIG. 2. Study of the dynamics predicted by Eq. (2) for a release
of a cold atomic gas into a harmonic potential VðxÞ ¼ 2x2 from a
double-well potential (see text for the values of all parameters).
(a) Plot of the density profile hq̂0ðx; tÞi as a function of t and x
and (b) at different times compared to its value in the thermal
Gibbs ensemble. (d) Global thermodynamic entropy as a function
of time reaching the thermal value at late times. (c) Cartoon
picture of the experimental setting.

FIG. 3. Comparison between the predictions of the hydro-
dynamic Eq. (2) (continuous lines) and Monte Carlo numerical
simulation of the NLS model (symbols, error bars are reported
only in the enlarged inset since they are negligible on the plot
scale) for the same quench as in Fig. 1 with L ¼ 25.6. Dotted
lines are the final values at thermal equilibrium. Left: evolution of
the density profile hjψ j2i ¼ hðψ†ψÞðx; tÞi at some given positions
x as function of time. Inset shows the (diffusively) vanishing
difference from the final thermal expectation value as function of
time Δhjψ j2i≡ hðψ†ψÞðx; tÞi − hðψ†ψÞðxÞiGE. Right: density
profile for all x ∈ ½0; L� at different times. The numerical
simulations have been performed with the same method used
in Ref. [70].
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with L ¼ 25.6 in order to suppress extra effects to the
dynamics due to corrections in Eq. (2) with higher
derivative terms. Due to the large value of L, the thermal-
ization timescales are large (see Fig. 1). Nevertheless, we
observe a small drift toward the thermal value for the profile
of bosonic density, correctly reproduced by Eq. (2).
Conclusion.—In this Letter, we have shown that the

hydrodynamic equation, Eq. (2), including diffusion and
an external force, has Gibbs thermal states as the only
stationary attractor states. This implies that interparticle
diffusion is the leading mechanism for thermalization in
the presence of integrability-breaking terms, and, as
expected, no thermalization is present in the noninteract-
ing limit of hard-core bosons [71–73] where there is no
diffusion [43,44,50]. This is in agreement with previous
works on perturbed classical integrable models [74,75]
where it was noticed that, while chaotic behavior is
achieved at short times in many-body systems close to
integrability, thermalisation occurs after having diffu-
sively spread within the classical phase space, and it
manifests itself on much longer timescales (see also [76]
for a previous study on the Bose gas and [77] in the Gross-
Pitaevskii equation). Moreover, in integrable models,
there exists an infinite number of modes, in particular
the ones with large momentum, with the arbitrarily small
diffusion constant Dα

θ . Therefore, local observables that
couple to some density of quasiparticles thermalize
with diffusive thermalization drifts whose effective dif-
fusion constants are not bounded from below and can
take quite small values, therefore leading to very large
observable-dependent thermalization times. Our work
gives a comprehensive explanation for the apparent lack
of thermalization on finite timescales observed in exper-
imental [4] and numerical [22] settings. It also provides a
quantitative prediction for the timescales necessary to see
thermalization up to a generic precision. Moreover, while
we here focus on a purely one-dimensional gas, several
extensions of Eq. (2) can be introduced to account for
experimental effects such as losses [78], dephasing noise
[70], and crossover to three-dimensional geometries
[19,79]. Finally, it is an interesting question for the future
to relate the growth of thermodynamic entropy of Eq. (3)
to the well-known growth of entanglement entropy after
quantum quenches [80–85].
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