1,373 research outputs found
CORAM (COsmic RAy Mission): An outreach program one century after Pacini and Hess works
Abstract CORAM (COsmic RAy Mission) is an outreach program carried out by INFN and the University of Salento in close collaboration with high schools. Students and their teachers are involved in the design, construction, test and operation of detectors for the measurement of several properties of the cosmic ray flux. The results of a set of measurements, made with a first detector prototype at different altitudes and underground, will be described
Effects of nuclear re-interactions in quasi-elastic neutrino-nucleus scattering
The effects of nuclear re-interactions in the quasi-elastic neutrino-nucleus
scattering are investigated with a phenomenological model. We found that the
nuclear responses are lowered and their maxima are shifted towards higher
excitation energies. This is reflected on the total neutrino-nucleus cross
section in a general reduction of about 15% for neutrino energies above 300
MeV.Comment: 15 pages, 5 figures. Submitted to AstroParticle Physic
Hadron-Hadron and cosmic-ray interactions at multi-TeV energies
The workshop on "Hadron-Hadron and Cosmic-Ray Interactions at multi-TeV Energies" held at the ECT centre (Trento) in Nov.-Dec. 2010 gathered together both theorists and experimentalists to discuss issues of the physics of high-energy hadronic interactions of common interest for the particle, nuclear and cosmic-ray communities. QCD results from collider experiments-mostly from the LHC but also from the Tevatron, RHIC and HERA-were discussed and compared to various hadronic Monte Carlo generators, aiming at an improvement of our theoretical understanding of soft, semi-hard and hard parton dynamics. The latest cosmic-ray results from various ground-based observatories were also presented with an emphasis on the phenomenological modeling of the first hadronic interactions of the extended air-showers generated in the Earth atmosphere. These mini-proceedings consist of an introduction and short summaries of the talks presented at the meeting
The Air Microwave Yield (AMY) experiment - A laboratory measurement of the microwave emission from extensive air showers
The AMY experiment aims to measure the microwave bremsstrahlung radiation
(MBR) emitted by air-showers secondary electrons accelerating in collisions
with neutral molecules of the atmosphere. The measurements are performed using
a beam of 510 MeV electrons at the Beam Test Facility (BTF) of Frascati INFN
National Laboratories. The goal of the AMY experiment is to measure in
laboratory conditions the yield and the spectrum of the GHz emission in the
frequency range between 1 and 20 GHz. The final purpose is to characterise the
process to be used in a next generation detectors of ultra-high energy cosmic
rays. A description of the experimental setup and the first results are
presented.Comment: 3 pages -- EPS-HEP'13 European Physical Society Conference on High
Energy Physics (July, 18-24, 2013) at Stockholm, Swede
Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS
Tensions in several phenomenological models grew with experimental results on
neutrino/antineutrino oscillations at Short-Baseline (SBL) and with the recent,
carefully recomputed, antineutrino fluxes from nuclear reactors. At a
refurbished SBL CERN-PS facility an experiment aimed to address the open issues
has been proposed [1], based on the technology of imaging in ultra-pure
cryogenic Liquid Argon (LAr). Motivated by this scenario a detailed study of
the physics case was performed. We tackled specific physics models and we
optimized the neutrino beam through a full simulation. Experimental aspects not
fully covered by the LAr detection, i.e. the measurements of the lepton charge
on event-by-event basis and their energy over a wide range, were also
investigated. Indeed the muon leptons from Charged Current (CC) (anti-)neutrino
interactions play an important role in disentangling different phenomenological
scenarios provided their charge state is determined. Also, the study of muon
appearance/disappearance can benefit of the large statistics of CC muon events
from the primary neutrino beam. Results of our study are reported in detail in
this proposal. We aim to design, construct and install two Spectrometers at
"NEAR" and "FAR" sites of the SBL CERN-PS, compatible with the already proposed
LAr detectors. Profiting of the large mass of the two Spectrometers their
stand-alone performances have also been exploited.Comment: 70 pages, 38 figures. Proposal submitted to SPS-C, CER
Performance Of A Liquid Argon Time Projection Chamber Exposed To The WANF Neutrino Beam
We present the results of the first exposure of a Liquid Argon TPC to a
multi-GeV neutrino beam. The data have been collected with a 50 liters
ICARUS-like chamber located between the CHORUS and NOMAD experiments at the
CERN West Area Neutrino Facility (WANF). We discuss both the instrumental
performance of the detector and its capability to identify and reconstruct low
multiplicity neutrino interactions.Comment: 14 pages, 12 figures. Submitted for publication to Physical Review
Internal alignment and position resolution of the silicon tracker of DAMPE determined with orbit data
The DArk Matter Particle Explorer (DAMPE) is a space-borne particle detector
designed to probe electrons and gamma-rays in the few GeV to 10 TeV energy
range, as well as cosmic-ray proton and nuclei components between 10 GeV and
100 TeV. The silicon-tungsten tracker-converter is a crucial component of
DAMPE. It allows the direction of incoming photons converting into
electron-positron pairs to be estimated, and the trajectory and charge (Z) of
cosmic-ray particles to be identified. It consists of 768 silicon micro-strip
sensors assembled in 6 double layers with a total active area of 6.6 m.
Silicon planes are interleaved with three layers of tungsten plates, resulting
in about one radiation length of material in the tracker. Internal alignment
parameters of the tracker have been determined on orbit, with non-showering
protons and helium nuclei. We describe the alignment procedure and present the
position resolution and alignment stability measurements
Proton-air cross section measurement with the ARGO-YBJ cosmic ray experiment
The proton-air cross section in the energy range 1-100 TeV has been measured
by the ARGO-YBJ cosmic ray experiment. The analysis is based on the flux
attenuation for different atmospheric depths (i.e. zenith angles) and exploits
the detector capabilities of selecting the shower development stage by means of
hit multiplicity, density and lateral profile measurements at ground. The
effects of shower fluctuations, the contribution of heavier primaries and the
uncertainties of the hadronic interaction models, have been taken into account.
The results have been used to estimate the total proton-proton cross section at
center of mass energies between 70 and 500 GeV, where no accelerator data are
currently available.Comment: 14 pages, 9 figure
- …