8,007 research outputs found

    Ground states of a two phase model with cross and self attractive interactions

    Full text link
    We consider a variational model for two interacting species (or phases), subject to cross and self attractive forces. We show existence and several qualitative properties of minimizers. Depending on the strengths of the forces, different behaviors are possible: phase mixing or phase separation with nested or disjoint phases. In the case of Coulomb interaction forces, we characterize the ground state configurations

    Zipf and Heaps laws from dependency structures in component systems

    Get PDF
    Complex natural and technological systems can be considered, on a coarse-grained level, as assemblies of elementary components: for example, genomes as sets of genes, or texts as sets of words. On one hand, the joint occurrence of components emerges from architectural and specific constraints in such systems. On the other hand, general regularities may unify different systems, such as the broadly studied Zipf and Heaps laws, respectively concerning the distribution of component frequencies and their number as a function of system size. Dependency structures (i.e., directed networks encoding the dependency relations between the components in a system) were proposed recently as a possible organizing principles underlying some of the regularities observed. However, the consequences of this assumption were explored only in binary component systems, where solely the presence or absence of components is considered, and multiple copies of the same component are not allowed. Here, we consider a simple model that generates, from a given ensemble of dependency structures, a statistical ensemble of sets of components, allowing for components to appear with any multiplicity. Our model is a minimal extension that is memoryless, and therefore accessible to analytical calculations. A mean-field analytical approach (analogous to the "Zipfian ensemble" in the linguistics literature) captures the relevant laws describing the component statistics as we show by comparison with numerical computations. In particular, we recover a power-law Zipf rank plot, with a set of core components, and a Heaps law displaying three consecutive regimes (linear, sub-linear and saturating) that we characterize quantitatively

    Highest states in light-cone AdS5×S5AdS_5\times S^5 superstring

    Get PDF
    We study the highest states in the compact rank-1 sectors of the AdS5 X S5 superstring in the framework of the recently proposed light cone Bethe Ansatz equations. In the su(1|1) sector we present strong coupling expansions in the two limits L,lambda -> OO (expanding in power of lambda^{-1/4} with fixed large L) and lambda, L -> OO (expanding in power of 1/L with fixed large lambda) where lambda is the 't Hooft coupling and L is the number of Bethe momenta. The two limits do not commute apart from the leading term which reproduces the result obtained with the Arutyunov-Frolov-Staudacher phase in the lambda, L -> OO limit. In the su(2) sector we perform the strong coupling expansions in the L->OO limit up to O(lambda^{-1/4}), and our result is in agreement with previuos String Bethe Ansatz analysis.Comment: 33 pages, 3 eps figure

    External validity of randomized controlled trials on Alzheimer's disease: the biases of frailty and biological aging

    Get PDF
    To date, the external validity of randomized controlled trials (RCTs) on Alzheimer's disease (AD) has been assessed only considering monodimensional variables. Nevertheless, looking at isolated and single characteristics cannot guarantee a sufficient level of appreciation of the AD patients' complexity. The only way to understand whether the two worlds (i.e., research and clinics) deal with the same type of patients is to adopt multidimensional approaches more holistically reflecting the biological age of the individual. In the present study, we compared measures of frailty/biological aging [assessed by a Frailty Index (FI)] of a sample of patients with AD resulted eligible and subsequently included in phase III RCTs compared to patients referring to the same clinical service, but not considered for inclusion. The "RCT sample" and the "real world sample" were found to be statistically similar for all the considered sociodemographic and clinical variables. Nevertheless, the "real world sample" was found to be significantly frailer compared to the "RCT sample," as indicated by higher FI scores [0.28 (SD 0.1) vs. 0.17 (SD 0.1);p < 0.001, respectively]. Moreover, when assessing the relationship between FI and age, we found that the correlation was almost null in the "RCT sample" (Spearman'sr = 0.01;p = 0.98), while it was statistically significant in the "real world sample" (r = 0.49;p = 0.02). The application of too rigid designs may result in the poor representativeness of RCT samples. It may even imply the study of a condition biologically different from that observed in the "real world." The adoption of multidimensional measures capable to capture the individual's biological age may facilitate evaluating the external validity of clinical studies, implicitly improving the interpretation of the results and their translation in the clinical arena

    Persistent Homology analysis of Phase Transitions

    Get PDF
    Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called XY-mean field model and by the phi^4 lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a-priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.Comment: 10 pages; 10 figure

    The hidden burden of food waste: The double energy waste in Italy

    Get PDF
    The energy intensity of modern food systems represents a major issue in a scenario of decreasing oil resources and increasing population. Beside the use of renewable energy, an increased efficiency in food systems could contribute to reduce fossil fuels dependence. In this sense, food losses and waste (FLW) have crucial consequences on the energy balance. Based on the concept of "embodied energy", food wastage can be framed as a double waste of energy, both in terms of non-consumed food energy and the inputs used for production. Secondary data regarding direct and indirect energy inputs and FLW have been collected for the Italian food chain to estimate the embodied energy of food waste. Since in 2011 the production and distribution of food implied the use of 822 PJ and 18 Mt of food was discarded, 67 PJ of food energy and 100 PJ of embodied energy were wasted. These figures are equivalent to 12.2% of the total nutritional energy output and to 1.3% of the final energy use in Italy, respectively. The concept of double energy waste sheds new light on the intertwined relationship between energy and food security, suggesting that appropriate food waste reduction policies could result in a higher food production level and relevant energy savings

    Item-Level Scores on the Boston Naming Test as an Independent Predictor of Perirhinal Volume in Individuals with Mild Cognitive Impairment

    Get PDF
    We explored the methodological value of an item-level scoring procedure applied to the Boston Naming Test (BNT), and the extent to which this scoring approach predicts grey matter (GM) variability in regions that sustain semantic memory. Twenty-seven BNT items administered as part of the Alzheimer’s Disease Neuroimaging Initiative were scored according to their “sensorimotor interaction” (SMI) value. Quantitative scores (i.e., the count of correctly named items) and qualitative scores (i.e., the average of SMI scores for correctly named items) were used as independent predictors of neuroanatomical GM maps in two sub-cohorts of 197 healthy adults and 350 mild cognitive impairment (MCI) participants. Quantitative scores predicted clusters of temporal and mediotemporal GM in both sub-cohorts. After accounting for quantitative scores, the qualitative scores predicted mediotemporal GM clusters in the MCI sub-cohort; clusters extended to the anterior parahippocampal gyrus and encompassed the perirhinal cortex. This was confirmed by a significant yet modest association between qualitative scores and region-of-interest-informed perirhinal volumes extracted post hoc. Item-level scoring of BNT performance provides complementary information to standard quantitative scores. The concurrent use of quantitative and qualitative scores may help profile lexical–semantic access more precisely, and might help detect changes in semantic memory that are typical of early-stage Alzheimer’s disease

    Improved flexibility and economics of Calcium Looping power plants by thermochemical energy storage

    Get PDF
    Abstract In this work, a Calcium looping (CaL) system including high temperature sorbent storage is presented, allowing to reduce the size of the calciner and the associated capital-intensive equipment (ASU and CPU). Reduction of the capital costs is particularly important for power plants with low capacity factors, which is becoming increasingly frequent for fossil fuel power plants in electric energy mixes with increasing share of intermittent renewables. The process assessment is performed by: (i) defining pulverized coal power plant (PCPP) with CaL capture system with and without sorbent storage and their mass and energy balances at nominal load; (ii) defining a simple method to predict the performance of the plant at part-load; (iii) defining the economic model, including functions for the estimation of the plant equipment cost; (iv) performing yearly simulations of the systems to calculate yearly electricity production, CO2 emissions and levelized cost of electricity for different sizes of the calcination line and the storage system and (v) performing sensitivity analysis with different power production plans and carbon taxes. With this process, optimal size of the calciner and of the storage system minimizing the cost of electricity have been found. The optimal plant design was found to correspond to a solids storage system sized to manage the weekly cycling and a calciner line sized on the average weekly load. However, to avoid excessively large solids storage system, sizing the calciner on the average daily load and the storage system to manage the daily cycling appears more feasible from the logistic viewpoint and leads to minor economic penalty compared with the optimal plant design. For the selected case sized on the daily cycling, reduction of the cost of CO2 avoided between 16% and 26% have been obtained compared to the reference CaL plant without solids storage, for representative medium and low capacity factor scenarios respectively

    The effects of MgO, Na2O and SO3 on industrial clinkering process: phase composition, polymorphism, microstructure and hydration, using a multidisciplinary approach

    Get PDF
    Preprint publicado en: Materials Characterization Volume 155, September 2019, 109809The present investigation deals with how minor elements (their oxides: MgO, Na2O and SO3) in industrial kiln feeds affect (i) chemical reactions upon clinkering, (ii) resulting phase composition and microstructure of clinker, (iii) hydration process during cement production. Our results show that all these points are remarkably sensitive to the combination and interference effects between the minor chemical species mentioned above. Upon clinkering, all the industrial raw meals here used exhibit the same formation temperature and amount of liquid phase. Minor elements are preferentially hosted by secondary phases, such as periclase. Conversely, the growth rate of the main clinker phases (alite and belite) is significantly affected by the nature and combination of minor oxides. MgO and Na2O give a very fast C3S formation rate at T > 1450 K, whereas Na2O and SO3 boost C2S After heating, if SO3 occurs in combination with MgO and/or Na2O, it does not inihibit the C3S crystallisation as expected. Rather, it promotes the stabilisation of M1-C3S, thus indirectly influencing the aluminate content, too. MgO increseases the C3S amount and promotes the stabilisation of M3-C3S, when it is in combination with Na2O. Na2O seems to be mainly hosted by calcium aluminate structure, but it does not induce the stabilisation of the orhtorhombic polymorph, as supposed to occur. Such features play a key role in predicting the physicalmechanical performance of a final cement (i.e. rate of hydration and hardening) when used as a bulding material.The present study has been partly funded by the project PRIN 2017 (2017L83S77), of the Italian Ministry for Education, University and Research (MIUR)
    • 

    corecore