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Complex natural and technological systems can be considered, on a coarse-grained level, as assemblies of
elementary components: for example, genomes as sets of genes or texts as sets of words. On one hand, the joint
occurrence of components emerges from architectural and specific constraints in such systems. On the other hand,
general regularities may unify different systems, such as the broadly studied Zipf and Heaps laws, respectively
concerning the distribution of component frequencies and their number as a function of system size. Dependency
structures (i.e., directed networks encoding the dependency relations between the components in a system) were
proposed recently as a possible organizing principles underlying some of the regularities observed. However, the
consequences of this assumption were explored only in binary component systems, where solely the presence
or absence of components is considered, and multiple copies of the same component are not allowed. Here we
consider a simple model that generates, from a given ensemble of dependency structures, a statistical ensemble of
sets of components, allowing for components to appear with any multiplicity. Our model is a minimal extension that
is memoryless and therefore accessible to analytical calculations. A mean-field analytical approach (analogous to
the “Zipfian ensemble” in the linguistics literature) captures the relevant laws describing the component statistics
as we show by comparison with numerical computations. In particular, we recover a power-law Zipf rank plot,
with a set of core components, and a Heaps law displaying three consecutive regimes (linear, sublinear, and
saturating) that we characterize quantitatively.
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I. INTRODUCTION

Several physical, biological, and artificial systems are
modular and can be naturally partitioned into well-defined
basic components. These components can be considered as
the building blocks that constitute each element of the sys-
tem. For example, books can be regarded as sets of words,
each word possibly occurring multiple times in the same
book; likewise, operating systems such as Linux are sets
of packages, and genomes are sets of genes, where each
gene belongs to an evolutionary family [1–5]. In general, a
system with this simple modular structure, called a “compo-
nent system,” can be considered as a specific collection of
partitions of elementary components. For instance, bacterial
genomes are composed of genes drawn from a common pool
of gene families, but each genome possesses them in different
multiplicities. The same description applies to books in a
linguistic corpus, where different books are written using
words from the same vocabulary. These partitions, and their
statistical properties, are generally an extension of the classic
partitions extensively studied in probability [6] as well as in
statistical mechanics, for example, related to the equilibrium
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statistics of particles in energy states [7], to nonequilibrium
site occupancy in driven diffusive systems [8], or resulting
from stochastic processes based on duplication-innovation
mechanisms [9,10].

The representation of complex systems as component sys-
tems may reveal information on the system’s generative mech-
anisms and architecture. Notably, a variety of quantitative laws
have been discovered, which, intriguingly, are often conserved
across very different systems. Prominent examples are Zipf’s
law, concerning the power-law distribution of component
frequencies [11–16], and the sublinear scaling of the number
of different component classes with system size, often referred
to as Heaps’s law [10,17–19]. The analysis of these laws
has a long tradition in quantitative linguistics [4,11]. Several
mechanisms of text generation, based on different hypotheses
on the fundamental structures or principles of natural language,
have been proposed to explain these statistical patterns [20–
22]. Analogously, in genomics, the coarse-grained view of
genomes as component systems reveals emergent quantitative
invariants pointing to relevant underlying evolutionary and
architectural properties of genomes [1,3,23–26].

Scale invariance (and universality), suggested by the pres-
ence of Zipf’s law, may be a natural consequence of criticality
[27], either due to evolutionary tuning or self-organization
[28,29], as is well understood via the renormalization group
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in statistical mechanics. However, more and more often
scale-free features in different contexts have been recog-
nized as a possible consequence of stochastic processes
based on specific features, such as preferential attachment
[12,13] or a history-dependent entropic reduction of the ac-
cessible states [30,31]. The plethora of possible mechanisms
that can generate these pervasive statistical patterns raises
questions concerning their true origin and their robustness
[32].

Typically, these proposed mechanisms do not explicitly take
into account the functional specificities of single components,
their functional dependencies, or the possible synergy and
conflicts between components. These interactions are essential
in most empirical systems. For example, the importance of this
aspect is clear in operating systems (or other large software
projects), where a package performs a specific function and
typically requires the presence of other components for func-
tioning. Indeed, models based on dependency structures have
emerged recently as a promising framework to rationalize com-
ponent dependencies and analyze their consequences in terms
of component statistics [3]. Similar dependency structures also
emerge in preference prediction [33] or for addressing causality
in financial data [34].

More precisely, a dependency structure is a directed graph
(most often, but not necessarily, acyclic), whose nodes are the
components (e.g., Linux packages, or genes) and whose links
are the dependency relations occurring between them (e.g.,
requirement constraints or regulatory pathways). A component
depends on another if it is not functional unless the latter is
present. A simple mechanism to build a component system
compatible with a given dependency structure identifies a sys-
tem realization (e.g., a genome or a book) with the choice of a
node and all its direct and indirect dependencies [3]. This model
allows us to link quantitative laws of the component statistics to
topological properties of the dependency structure (and hence
to the generative processes sculpting it). For instance, a broad
ensemble of dependency structures has the property that the
total number of nodes that ultimately depend on a given node
has scale-free distribution in the limit of large system size.
Notice that this number does not coincide with the degree of
the node, since it counts both direct and indirect dependencies,
whereas degree only counts the direct ones. Actually, a scale-
free distribution of total dependencies is a much weaker condi-
tion than the power-law distribution of degrees (i.e., of direct
dependencies), and therefore includes a much broader class
of graphs than that of “scale-free networks,” as per the usual
definition.

This topological property explains the fat-tailed distribution
of component occurrences across realizations, both in genomes
and operating systems [3]. However, since this simple model
was inspired by software packages, it was developed in the
restrictive case of binary (presence or absence) abundances
of components. While a piece of software is either installed
or absent, in most empirical component systems a component
type can be present in many instances. For example, a gene
is typically present in multiple copies (called paralogs) in a
genome, and the same word is typically used several times in
a single book.

Here, to capture this large class of component systems,
we consider an extension of the model proposed in Ref. [3]

to the cases in which components can appear with arbitrary
abundances. This extension is able to address the question of
how dependency structures affect abundance-related features,
such as Zipf’s laws and in particular Heaps’s law. The same
question is not defined in the case of binary component
abundances, where, for example, Heaps’s law is trivially linear.

II. MODEL

We consider a simplified description of complex functional
architectures as unordered sets of modular components. Let U
be the set of all unique components (the universe), and let U =
|U | denote its cardinality. A realization of this “component
system” is a set r = {ci} of components ci ∈ U , with i =
1, . . . , N , where N is the size of the realization. The rules
for constructing a realization are specified by a network of
dependencies, as we explain below.

A dependency structure is a directed acyclic graph G on
U , which encodes the dependencies between the components.
An edge i → j between two nodes i and j represents the
relation “i depends on j .” A component i is said to depend
on another component j if i is not functional without j . In
empirical cases, such a relation can be more or less strict
depending on the system; for instance, it is enforced in
software operating systems, where a package cannot function
unless all its dependencies are installed, but not in metabolic
networks, where alternative pathways can be followed to the
same metabolite [26,35]. The model assumes strict unbroken
dependencies. Notice that acyclicity of G is not stringently
necessary; however, as will be clear in the following, a cycle in
G would behave as a single node in the model. Our convention
in the direction of the arrow describing the dependence i → j

may appear unnatural. We made this choice to be consistent
with previous works [3], and because this is the actual direction
of pointers in software systems.

The topology of the dependency structure is conceptually
separated from the procedure that generates realizations satis-
fying the dependency constraints. Here we use the ensemble
of dependency structures introduced in Ref. [3], and we
define a novel method to build the realizations. Specifically,
as sketched in Fig. 1, the growth process that creates the
dependency network is an incremental node-addition process
generating structures with power-law-distributed sizes of di-
rect and indirect dependencies (such property is crucial to
reproduce Zipf’s law, see below). More specifically, let us
fix an average out-degree D � 1, i.e., an average number of
direct dependencies of a given component. Starting with an
initial graph consisting of a single node, the full graph is built
node by node by attaching the new node to d + 1 randomly
chosen existing nodes (possibly with repetitions), where d is
a Poissonian random variable of mean D − 1. The process is
stopped when the network reaches the predetermined size U .
A graph assembled with these rules is directed and acyclic,
and hence a good dependency structure, as can be seen by
labeling each node by the time t = 1, . . . , U it was added to
the network, and noticing that there can be no links t → t ′ with
t < t ′. Given a node c, the set ∧(c) ⊆ U is defined as the set
of all nodes c′ such that there exists at least one directed path
in G starting from c and arriving at c′. We will call the set ∧(c)
the forward cone of c. Similarly, we define the backward cone
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D=2

dependency structure realization

FIG. 1. Illustration of the model. The model is defined by two
steps. The first step creates a dependency structure by an incremental
node-addition process with mean out-degree D (left panel; the new
node on the left attaches to two existing nodes, indicated by dotted
lines). The second step builds realizations drawing at random k

precursor nodes (larger circles in figure, where k = 2) and taking
all components belonging to their forward “cones” of dependency
(shaded in gray). This second step assigns multiplicities to the com-
ponents appearing in each realization: The abundance of component
i is the number of precursors whose forward cones contain i. In the
realization illustrated in the right panel, the nodes (components) in the
light-gray regions have multiplicity 1, while those in the dark-gray
region have multiplicity 2.

∨(c) of c as the set of all nodes c′ such that there exists a path
from c′ to c. In other words, ∧(c) is the set of all components
required by the (direct and indirect) dependencies of c, whereas
∨(c) is the set of the nodes that depend (directly or indirectly)
on c. We remark that networks grown by this process do not
have fat-tailed degree distributions. Instead, it is the size of the
backward cones that is approximately power-law distributed
(see Sec. III A).

Once a dependency structure G is established, realizations
of the model, i.e., sets of components, are generated by the
following procedure (see also Fig. 1). Let us fix a positive
integer k, which represents the number of “precursor” com-
ponents determining a realization. The k precursors {pj }, j =
1, . . . , k, are chosen randomly and independently among the
nodes of G. Then the corresponding realization is produced by
taking all components belonging to the forward cones of the
precursors. To complete the model specification one needs a
rule to choose the multiplicities of the components. We allow
a component belonging to multiple cones to appear in multiple
copies. Let us imagine that precursors are added one at a time
to the realization. At the j th step the existing realization rj−1

(possibly empty, when j = 1) is extended by the addition of
elements from the cone ∧(pj ) of the precursor pj :

rj = rj−1 ∪ �j , �j ⊆ ∧(pj ). (1)

The choice of the incrementing set �j must be done so as to
satisfy the dependency relations, i.e., rj ⊇ ∧(pj ). Doing this
at every step ensures that the final realization rk will not have
any unsatisfied dependency. Other than that, �j is in principle
unconstrained, and it may be a random variable even at fixed
pj and rj−1. Here we make the simplest choice

�j = ∧(pj ). (2)

This makes the process Markovian, in the sense that rj \
rj−1 ≡ �j is independent of rj−1. The case k = 1, when a

realization is specified by a single precursor, reproduces the
model of Ref. [3].

III. RESULTS

Our description separates the relational constraints existing
between the components, such as dependency and incompat-
ibility, from their functional correlations, such as synergy,
co-occurrence, interchangeability, conflict, and so on. For what
concerns the functional correlations, our model is the sim-
plest least-constrained model where no correlations between
components are dictated, other than those arising from the
dependencies. An advantage of this model is its analytical
tractability. The form of Zipf’s law is basically the same as
in the binary model, and the mean-field analysis parallels that
in Ref. [3]. The main additional output of our extension is a
nontrivial Heaps law, which is derived analytically below.

A. Zipf’s law and the occurrence-abundance relation

We now set out to compute the distribution of component
abundance emerging from a set of realizations in this model,
equivalent to the empirical Zipf’s law measured from a set of
texts.

Given a set of R realizations of a component system, the
“popularity” of a component i can be measured in two ways:
by its abundance ai and by its occurrence oi . The abundance
counts the number of times that i appears in all realizations
(with multiplicities):

ai = 1

kR

∑
r

∑
c∈r

δc,i . (3)

In the model, the maximum abundance of a component i

corresponds to drawing i each time a cone is selected, for each
realization. In such a case, the double sum in (3) is kR. There-
fore, the abundance ai is normalized so that 0 � ai � 1 (we
will call ai the relative abundance when it is important to stress
that it is an intensive quantity). The occurrence oi measures the
fraction of realizations containing the component, regardless
of its abundance:

oi = 1

R

∑
r

[
1 −

∏
c∈r

(
1 − δc,i

)]
. (4)

With this definition, the occurrence is normalized so that 0 �
oi � 1.

Zipf’s law is a statement about the rank-frequency relation
of components. Specifically, the frequency of a component
decreases as a power of its rank r, fr ∝ r−γ (where the rank
is 1 for the most frequent component, 2 for the second most
frequent, and so on) [4]. The Zipf relation is expected to
be independent of the number of cones k (at least for large
systems). In fact, the abundance ai of a given component in
R realizations constructed with k cones each has the same
distribution as that in kR single-cone realizations, since the
choices of the cones are independent. ai can be estimated as
the probability of choosing a cone that contains i, which is
proportional to the size |∨ (i)| of the backward cone of i:

ai = |∨ (i)|
U

. (5)

012315-3



ANDREA MAZZOLINI et al. PHYSICAL REVIEW E 98, 012315 (2018)

Let us call rank(i) the rank of component i when all
components are ranked by their abundance. Following Ref. [3],
an approximate relation can be derived between |∨ (i)| and
rank(i), which will allow to obtain an analytical estimate of
Zipf’s plot. The t th node in the network (the one added at the
t th step of the construction, when a network of size t − 1 has
been already generated) has approximately (U/t )D nodes that
depend on it. This result can be obtained by writing an equation
stating that the backward cone of the t th node is the union of
the backward cones of all the nodes that, at later times t ′, will
directly attach to the t th node. Neglecting the intersections
between these cones allows one to write the recursion

|∨ (t )| = 1 +
U∑

t ′=t+1

D

t ′
|∨ (t ′)|, (6)

where the factor D/t ′ estimates the probability that the t ′th
node attaches to the t th node [with a slight abuse of notation,
we write ∧(t ) and ∨(t ) for the forward and backward cones
of the t th node]. By approximating the sum by an integral and
taking a derivative with respect to t , one obtains a differential
equation that is solved by |∨ (t )| = (U/t )D .

For small t , however, (U/t )D is greater than the size of
the network U . In fact, the relation can hold only down to a
cutoff tmin, which can be estimated by the condition that the
whole network depends on the tminth node, i.e., (U/tmin)D =
U , which gives tmin = U 1−1/D . For any node below tmin, the
size of its backward cone is ≈ U :

|∨ (t )| ≈
{

U t < U 1−1/D

(U/t )D t � U 1−1/D
. (7)

Equations (5) and (7) imply that if node i is the t th node in the
network growth process, then t = rank(i). (This identification
does not hold for the first U 1−1/D components, but this does
not influence the result since the size of their backward cones
are equal in this approximation.) Therefore, one obtains

ai ≈
{

1 rank(i) < U 1−1/D

rank(i)−DUD−1 rank(i) � U 1−1/D
. (8)

This relation has the form of a Zipf power law (with exponent
−D) with an initial “core set” consisting of U 1−1/D compo-
nents having similar abundances. This is reminiscent of a result
found in natural language showing that the empirical double
scaling in Zipf’s law can indeed be explained by the presence
of a finite set of specific core words [22,36]. For the particular
growth process chosen here, the core set coincides with the
oldest nodes, i.e., the ones appearing earlier in the growth of the
network. For more general ensembles of topologies, the core
can be defined as the set of all nodes whose backward cone has
size of order U , for large U . Figure 2(a) compares the analytical
form (8) with the results of simulations, showing good accord,
especially in the behavior of the fat tail. The transition between
the core and the tail, instead, is less sharp than predicted. This is
due to the fact that the relation |∨ (t )| = (U/t )D starts to break
down before reaching U and saturates more smoothly than
in the approximation made above. Importantly, the relation
between rank and relative abundance does not depend on the
number of cones k, in accord with the foregoing prediction.
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FIG. 2. Simulations match the analytical prediction for the distri-
bution of total abundance in a set of realizations (empirical Zipf’s
law) and for the abundance-occurrence relation. (a) Rank-plot of
component abundances. (b) Rank-plot of component occurrences. (c)
Scatterplot of the abundance (y axis) versus the occurrence (x axis)
of each component. Colored symbols are results of simulations (1000
realizations) with varying number of precursors k, and the dashed lines
are the analytical prediction. (Parameters: U = 1000, D = 1.5.)

Contrary to the binary case discussed in Ref. [3], where
abundance and occurrence are the same quantity [as shown
by Eq. (9)], the rank-occurrence and rank-abundance relations
in our model are different in general. Figure 2(b) shows that
the Zipfian plot for the occurrence has a similar appearance to
the usual one but with a larger and larger core as k increases.
When plotted as a probability distribution function in linear
scale, the rank-occurrence relation has a characteristic U shape
[37,38] that highlights a subset constituted by a large number
of rare components and a subset of components shared by a
large fraction of realizations, usually referred to as the “cloud”
and “core” sets, respectively [25]. The specificity of the core
set in our model emerges from the dependency structure. How
these features are related to Zipf’s law in a scenario of random
sampling is explored in detail in Ref. [5].

The occurrence-abundance relation predicted by our model
turns out to be universal (or “null”), meaning that it is insensi-
tive to the explicit form of Zipf’s law, to the detailed structure of
the network, and even to the size U of the component universe.
In fact, we show here that a simple probabilistic argument gives
a relation that is consistent with simulations of the full model.
In the limit of large R, we can assume that the occurrence of
a component i is equal to the probability of choosing i at least
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once in a single realization: oi = 1 − (1 − ai )k , hence

ai = 1 − (1 − oi )
1/k. (9)

For realizations with a single precursor (k = 1), abundance
and occurrence are equal. As k increases, more and more
components (with larger and larger occurrence) assume small
abundances. In the large-k limit, all components have zero (rel-
ative) abundance, except those with occurrence 1. Figure 2(c)
shows that a scatterplot of abundance versus occurrence in
simulations perfectly matches the theoretical prediction (9).
The figure shows results for a single choice of D and U , but
we checked that these parameters have no effect on the curves.

B. Analytical form of Heaps’s law

We now ask about the change of the typical number of
distinct components with realization size. The calculation of
the number F (N ) of unique components in a realization of
size N can be performed in a mean-field approximation, where
the correlations between nodes are neglected. We consider a
process where a realization is generated by extracting N nodes
independently. The full model adds entire dependency cones
at once. However, one expects that the size N of a realization
scales linearly with the number of cones k, and we have verified
with simulations that this is indeed the case. The assumption
of independent extractions makes our mean-field approach to
evaluate Heaps’s law analogous to the “Zipfian ensemble” of
quantitative linguistics, in which realizations are generated
through random extractions of components with probabilities
proportional to their frequencies [5,39,40] or through a Poisson
process in which component frequencies establish their arrival
rates [41]. In this framework, Heaps’s law is the natural result
of the heterogeneity in component frequencies described by
Zipf’s law.

The probability

p(t ) = 1

�
|∨ (t )| (10)

of drawing the node t is proportional to the size |∨ (t )| of
the node’s backward cone. In a continuous approximation, the
normalization � can be fixed by the condition

∫ ∞
0 p(t ) dt = 1,

which yields

� = U
DU 1−1/D − 1

D − 1
. (11)

Note that � > U whenever U > 1 and D > 1.
Let p1(t, n) be the probability that the t th node in the

network is drawn for the first time when the system being
constructed has size n:

p1(t, n) = p(t )[1 − p(t )]n−1. (12)

A mean-field estimate of F can then be obtained as

F (N ) =
N∑

n=1

U∑
t=1

p1(t, n) ≈
∫ U

0
dt

N∑
n=1

p1(t, n). (13)

The geometric sum in n gives simply the probability 1 − [1 −
p(t )]N that the t th node has been drawn at least once after N

steps. The mean-field expression for Heaps’s law is then given

by the following integral:

F (N ) =
∫ U

0
dt{1 − [1 − p(t )]N }

= U − U 1−1/D

(
1 − U

�

)N

− I (N ), (14)

where the first term (U ) comes from the integral of 1, and the
second and third terms are the contributions of the two regions
in (7). The remaining integral,

I (N ) =
∫ U

U 1−1/D

dt

[
1 − 1

�

(
U

t

)D
]N

, (15)

can be evaluated with the change of variables z = (U/t )D/�,
which gives

I (N ) = U

D
�−1/D

∫ U/�

1/�

(1 − z)Nz−1−1/Ddz. (16)

By remembering that the primitive of (1 − z)αzβ is
zβ+1

2F1(−α, β + 1, β + 2, z)/(β + 1), where 2F1 is the
Gauss hypergeometric function, one finally obtains

F (N ) = U − U 1−1/D

(
1 − U

�

)N

− 2F1

(
−N,− 1

D
, 1 − 1

D
,

1

�

)
U

+ 2F1

(
−N,− 1

D
, 1 − 1

D
,
U

�

)
U 1−1/D. (17)

The hypergeometric function 2F1(−N, ·, ·, ·) is real when
N is an integer. Figure 3 shows that the analytical mean-
field expression (17) nicely matches the results of numerical
simulations of the model. A similar functional form to Eq. (17)
was found in Appendix E of Ref. [42], by assuming a Gamma
distribution for the frequencies of words in texts.

C. Linear, sublinear, and saturation regimes of Heaps’s law

If a realization is constructed by incremental addition of
randomly chosen components, then one expects F (N ) to be
approximately linear for small N , as it is unlikely to draw
the same component twice. Intuitively, the probability to do
so increases with N , up to a point where approximately all
components in the universe will have been included, and F (N )
will saturate to U . For instance, this is the behavior observed
empirically for the species-area relationship in ecology [43–
45]. This behavior becomes apparent by plotting F (N ) in log-
log scale [see Fig. 3(a)]. There emerge three distinct regimes:
a linear increase for small N , a saturation to U for large
N , and an intermediate regime where the sublinear increase
of F (N ) appears to be well described by a power law. Two
transition points can be identified, Nc and Ns , respectively at
the crossover between the linear and the sublinear regimes,
and at the onset of saturation. We collect here a few analytical
estimates and observations.

It is clear from expression (14) that, since p(t ) > 0 for a
finite universe,

lim
N→∞

F (N ) = U. (18)
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FIG. 3. The model reproduces the characteristic three-regimes
structure of Heaps’s law. (a) The number of distinct components
F (N ) of a realization as a function of realization size N (in log-log
scale). The colored circles are simulations, and lighter shades of
blue correspond to larger numbers k of precursors (k ranges from
1 to 3000). The red dashed lines are the analytical prediction (17).
The area of the solid curves represents the 90% variability interval.
(Parameters: U = 500, D = 2, 13 000 realizations.) (b) The same
plot of F (N ), in linear scale, for three values of the mean out-degree
D: 1 (dark blue), 1.5 (blue), and 2 (light blue). (c) Effective exponent
versus realization size for increasing values of U (black- to red-
colored lines, ranging logarithmically from U = 10 to U ≈ 6000).
Triangles correspond to the analytical estimate of Nc, which captures
well the transition to a plateau region. The analytical estimate of
Ns (squares) corresponds to an approximately constant effective
exponent.

This is a consequence of the definition of the model, whereby
F (N ) is monotonic by construction and F (N ) � U . However,
this limit is not apparent from the final formula (17). What
happens is that the (essential) singularities of the two hyperge-
ometric functions cancel out in the large-N limit. This makes it
difficult to compute values of F (N ) numerically in this regime
(see below).

An estimate of the point Ns where the saturation regime
sets in can be obtained from (14). The term with (1 − U/�)N

is significantly different from zero when U/� � 1/N , i.e.,
when N � �/U . The integral I (N ), instead, can be evaluated
for large N in a saddle-point approximation. The integrand
[Eq. (15)] attains its minimum at t = U , where it is equal
to (1 − 1/�)N ; hence, it is significantly different from zero
when N � �. Therefore, both N -dependent terms in (14) are
negligible when N � Ns = �, where � is given by (11).

The small-N behavior at finite U can be obtained in
principle from Eq. (14) as well by expanding in N before
performing the integral inI (N ). However, it is easier to analyze
the onset of sublinearity in the large-U regime by expanding
Eq. (17) in powers of 1/U 1−1/D . This can be done by using
the definition of the hypergeometric function:

2F1(a, b, c, z) =
∞∑

k=0

(a)k (b)k
(c)kk!

zk, (19)

where (α)k = α(α + 1)(α + 2) · · · (α + k − 1) is the
Pochhammer symbol. The two terms of the form 2F1(. . . ) in
(17) can be expanded in powers of z; Eq. (19) shows that the
term of order zj in such an expansion is a polynomial of order
j in N . The same property holds for the small-z expansion
of the first N -dependent term in (17), of the form (1 − z)N .
It is then easy to see, by keeping track of the analytical and
nonanalytical powers of U , that in the limit U → ∞ the
only nonvanishing term is N , and Heaps’s law reduces to the
identity

lim
U→∞

F (N ) = N. (20)

A linear onset is expected for small N even when U is finite.
Performing explicitly the expansion to first order in U−1+1/D

yields

F (N ) ≈ N − 1

2
N (N − 1)

2(D − 1)2

D(2D − 1)
U−1+1/D. (21)

The crossover point Nc separating the linear and sublinear
regimes can be estimated by the point where (21) reaches its
maximum:

Nc = D(2D − 1)

2(D − 1)2
U 1−1/D. (22)

This expression is expected to become inaccurate when D ≈ 1
(where in fact it diverges), because all terms of order U−j+j/D

with j > 1, which are neglected in (21), approach constants
for D → 1.

In order to identify more visually the transition points from
the data, one can plot the effective exponent

γeff (N ) = d log F (N )

d log N
, (23)

which is easily computed from numerical data as a discrete
derivative. γeff (N ) measures the apparent exponent that is
obtained by approximating the function F (N ) locally by a
power-law Nγeff . Figure 3(c) shows the effective exponent
for a range of values of U . For small U , the regimes are
somewhat intertwined, and no sharp transitions appear. For
larger U, γeff shows three plateaus, corresponding to γeff = 1,
γeff = 0, and an intermediate value γeff = γ . This intermediate
plateau, which becomes more and more extended by increasing
U , indicates the robustness of the effective power-law behavior
with the nontrivial exponent γ . While the figure suggests that
there may be an abrupt regime shift in U between the absence
and the presence of the intermediate plateau, a more refined
analysis (not reported here) shows a very smooth expansion
of the plateau for increasing values of U . An approximate
value for γ can be obtained by making the approximation
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(1 − ε)N ≈ exp(−Nε) in Eq. (15), where ε = (U/t )D/�. The
integral then becomes

I (N ) ≈ U

D

(
N

�

)1/D

�

(
− 1

D
, x

)∣∣∣∣
x=N/�

x=NU/�

. (24)

In the intermediate regime Nc � N � Ns one can use the
recurrence relation of the upper incomplete gamma function �

and its asymptotic expansion, finding

F (N ) ≈ �

(
1 − 1

D

)
U

(
N

�

)1/D

, (25)

where the one-argument � is the (complete) Euler gamma.
The equation then provides the power-law exponent: γ = 1/D.
This same exponent can be derived in the framework of the
Zipfian ensemble computations by a simple scaling argument
by assuming a pure power-law behavior of F (N ) [39,41,46].

Figure 3(c) also shows that the transition points computed
above, i.e., Nc given by (22), and

Ns = U
DU 1−1/D − 1

D − 1
, (26)

are reasonable estimates of the sizes where the two regime
shifts occur. Surprisingly, the estimate of Ns turns out to
correspond to an approximately U -independent value of the
effective exponent.

D. Stretched exponential saturation as a phenomenological
expression of Heaps’s law

As pointed out above, the asymptotically flat behavior of
Heaps’s law F (N ) in this model results from the cancellation
of two infinite contributions in the analytical formula. This
subtlety makes it numerically challenging to evaluate F (N ),
especially for large U and N . Such a difficulty prevents
the use of Eq. (17) to estimate the parameters by fitting
against empirical data. However, the analytical expression
(16) suggests a simple phenomenological expression, which
can be useful in fits. Since the integration variable z is small
for large U , one can attempt to approximate the integrand in
I (N ) by z−1−1/D exp(−zN )dz. In this form, the integral is
similar to a representation of the stretched exponential function
ψγ,a (x) = exp(−axγ ) in terms of exponential decays as a
Laplace transform,

ψγ,a (x) =
∫ ∞

0
Pγ,a (z)e−zxdz. (27)

The asymptotic behavior of Pγ,a (z) is known to be

Pγ,a (z) ∼ zγ+1 (28)

for large z, and an exponential decrease for small z [47]. This
suggests the following phenomenological expression:

Fph(N ) = U [1 − exp(−aNγ )]. (29)

Figure 4 shows that the stretched-exponential saturation,
Eq. (29), is a remarkably good approximation of the simulated
data. The log-linear scale reveals that the agreement is tight
on the whole range of N . However, the phenomenological
expression fails to capture the transient linear increase at
small sizes (see Sec. III C). Indeed, the small-N behavior
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FIG. 4. The stretched exponential is a good approximation of the
Heaps plot generated by the model. Number of unique components
(y axis, in linear scale) as a function of realization size (x axis,
in logarithmic scale), for three different values of U , the size of
the universe. Simulations are the solid curves (dark blue U = 100,
blue U = 200, and light blue U = 500; line width is the 90%
variability interval). The dashed red lines are the analytical prediction.
(Parameters: D = 1.5, k ranging from 1 to 5000.) (Inset) The fitted
stretched-exponential exponent γ as a function of U . Different shades
correspond toD = 1, 1.25, 1.5, 1.75, 2, from top to bottom; point size
represents errors.

of Fph is Fph(N ) ∼ UaNγ . Interestingly, if one extracts γ

by matching the large-z power-law scaling in Eq. (28) with
the factor z−1−1/D in Eq. (16), one obtains γ = 1/D, which
is the same exponent that was derived from Eq. (24). Note
however, that the integration range in (16) is very different
from the one in the integral representation (27) of ψγ,a , that
is, (0,∞). As a consequence, the fitted exponents γ can
deviate from the simple scaling relation γ = 1/D. Altogether,
these considerations suggest that it is quite surprising that the
stretched exponential can be such a good approximation.

IV. DISCUSSION

It is interesting to compare the results of this positive model,
where the component statistics are determined by component
dependencies, with more null views of Heaps’s and Zipf’s
laws. We assume the usual notion of null models, as the least-
constrained or maximally random scenarios, with which more
refined and elaborate (i.e., positive) models are compared.
Our analytical computations for the rank-abundance and rank-
occurrence and Heaps’s relations were all performed in an
ensemble where correlations between different components are
neglected. The agreement between the results obtained in such
a mean-field approximation and the numerical simulations
of the full model reflects the fact that the main statistics
considered are not sensitive to the correlations, and they depend
only weakly on the details of the network ensemble. Here we
have tried to pinpoint the salient features that generate Zipf’s
and Heaps’s laws, namely the fat tails of the size distribution
of backward cones and the size of the core. Other details are
expected to be relevant for other observables (see below).

Our results show that the null relation between Zipf’s law
and Heaps’s law is still satisfied even in a strongly interacting
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setting such as the one defined by dependency structures. At a
finer resolution, the Heaps plot may display non-null deviations
on top of the Zipfian ensemble prediction, perhaps carrying
information about the underlying dependencies. However,
the overall semiquantitative accord suggests that the classic
observables related to frequency and occurrence are not good
proxies of interdependency between components. In particular,
the approximate stretched-exponential form of Heaps’s law is
expected to hold not only for this special positive model, but
for any model yielding a Zipf law similar to Eq. (8). These
observations are in agreement with the results of Ref. [5], where
it is shown that building realizations of a component system
by randomly sampling from the global frequency distribution
of its components reproduces some empirical statistics of real
systems to a surprising detail.

Understanding how the positive trends emerge from the
random features is clearly crucial to determine the role played
by dependencies in a given empirical system. We briefly
discuss two such positive observables here, leaving a more
detailed investigation for future work. First, the Zipf law in
Eq. (8), which is the main input of a sampling procedure [5], is
instead a positive output of the model studied here: fixing the
network of dependencies between components constrains all
the main statistics regarding their abundance and occurrence,
including their frequency distribution. Second, the existence of
dependency relations generates nontrivial correlations between
the components. These correlations can be observed, e.g., by
measuring the empirical distribution of the mutual information
between the occurrences of pairs of components. Let pi (x) be
the fraction of realizations in which the component i has statex,
where x = 1 means it is present and x = 0 means it is absent,
and let pij (x, y) be the fraction of realizations in which the
component i has state x and the component j has state y. The
mutual information between the two components, measuring
how much the presence of one informs on the presence of the
other, is defined as

I (i, j ) =
∑
x,y

pij (x, y) log
pij (x, y)

pi (x)pj (y)
. (30)

If the probabilities are factorized, i.e., pij (x, y) = pi (x)pj (y),
as it is the case in the random sampling model, then I (i, j ) = 0.
If the empirical probabilities are computed from R samples,
one expects I (i, j ) to converge to 0 in the large-R limit; yet it
will have a nontrivial distribution for finite R. Figure 5 shows
the distribution of the mutual information I (i, j ), averaged
over all pairs i and j , for a set of realizations generated from
random sampling, compared to the positive model based on
dependency structures studied here. It is clear that, beyond a
common bulk due to finite-size fluctuations, the two models
have very different profiles in terms of pairwise correlations.
The effect of the underlying dependency structure generates a
high mutual information tail, populated by highly correlated
pairs of components and emerging from a background of pair-
wise relationships compatible with the null random-sampling
model. We also expect that dependency structures will create
correlations that go beyond the pairwise relations between
components.

The model presented here provides the simplest generative
mechanism producing collections of components consistent
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FIG. 5. Non-null signatures of component dependency. The dis-
tribution of mutual information (x axis), Eq. (30), for the random
sampling protocol of Ref. [5] (thick red line) and for the model studied
here (thin blue line). The frequency distribution of components was
obtained by the positive model (with parameters U = 1000, D =
1.5, k = 50), and I (i, j ) was computed for R = 1000 realizations of
both models. The distribution (y axis) is the normalized empirical
distribution for all realizations and all pairs (i, j ).

with a given dependency structure. Our construction extends
the one proposed in Ref. [3] to the case of components with
nonbinary abundance. While the distribution of component
abundances has a power-law tail with an initial core, like in
the case of Ref. [3], the situation is more complex here, as
the distribution of component abundances does not coincide
with that of occurrences, due to the nonbinary nature of the
multiplicities. More general families of models can be defined
by specifying the rules for selecting the abundance of nodes
belonging to the dependency cones of more than one precursor.
The additive choice taken here, where each cone determines
the addition of one copy of each component belonging to it,
provides a minimal model that is memoryless, and therefore
still accessible analytically.

Additionally, our model can be linked to other recent studies
investigating the dynamics of innovations [48,49]. In such
descriptions, Heaps’s law is seen as informative of how the
space of the “adjacent possible” is explored by a process. In
particular, Ref. [49] describes the occurrence of novelties as a
(noncausal) network exploration process (an edge-reinforcing
random walk) showing the appearance of Heaps’s law. In
our model, the causal relationships between individual com-
ponents encoded in the network affect the trend of Heaps’s
law and thus the probability of finding new components in a
dependency cone added to a realization. The two transition
points Nc and Ns define three nontrivially different regimes
for the innovation dynamics in a typical realization.

Since a wide variety of systems can be represented as
collections of components belonging to a common pool, our
model has general applicability. A special case is that of
genomes, which deserves some observations. A dependency
structure between genes represents the recipes binding the
functional roles of different protein families, thereby deter-
mining their usefulness in the same genome. For example,
a gene could depend on another if it is found downstream
in the same metabolic pathway [3]. The topology of such
a dependency has not been fully characterized. Likely, it
comprises both feedforward and feedback structures, as well
as nondirected exclusion principles (whereby a gene might not
be necessary or useful if another one is present). Concerning
the additive choice discussed above, it is possible (and likely)
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that the choice of a memoryless process is too restrictive in
the context of genomics. For instance, not all gene families
required by the presence of multiple precursors need to be
present in multiple copies. Future investigations could aim at
defining more stringently from data the minimal features of a
model of dependency that could realistically describe genomes.
This could be inferred by the correlation structure of domain
abundances from sets of entirely sequenced genomes.
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[49] I. Iacopini, S. Milojević, and V. Latora, Phys. Rev. Lett. 120,

048301 (2018).

012315-9

https://doi.org/10.1016/S0168-9525(03)00203-8
https://doi.org/10.1016/S0168-9525(03)00203-8
https://doi.org/10.1016/S0168-9525(03)00203-8
https://doi.org/10.1016/S0168-9525(03)00203-8
https://doi.org/10.1073/pnas.1311124110
https://doi.org/10.1073/pnas.1311124110
https://doi.org/10.1073/pnas.1311124110
https://doi.org/10.1073/pnas.1311124110
https://doi.org/10.1073/pnas.1217795110
https://doi.org/10.1073/pnas.1217795110
https://doi.org/10.1073/pnas.1217795110
https://doi.org/10.1073/pnas.1217795110
https://doi.org/10.1103/PhysRevX.8.021023
https://doi.org/10.1103/PhysRevX.8.021023
https://doi.org/10.1103/PhysRevX.8.021023
https://doi.org/10.1103/PhysRevX.8.021023
https://doi.org/10.1007/BF01213386
https://doi.org/10.1007/BF01213386
https://doi.org/10.1007/BF01213386
https://doi.org/10.1007/BF01213386
https://doi.org/10.1007/BF02727953
https://doi.org/10.1007/BF02727953
https://doi.org/10.1007/BF02727953
https://doi.org/10.1007/BF02727953
https://doi.org/10.1088/0305-4470/38/19/R01
https://doi.org/10.1088/0305-4470/38/19/R01
https://doi.org/10.1088/0305-4470/38/19/R01
https://doi.org/10.1088/0305-4470/38/19/R01
https://doi.org/10.1103/PhysRevE.81.021919
https://doi.org/10.1103/PhysRevE.81.021919
https://doi.org/10.1103/PhysRevE.81.021919
https://doi.org/10.1103/PhysRevE.81.021919
https://doi.org/10.1186/gb-2009-10-1-r12
https://doi.org/10.1186/gb-2009-10-1-r12
https://doi.org/10.1186/gb-2009-10-1-r12
https://doi.org/10.1186/gb-2009-10-1-r12
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1080/15427951.2004.10129088
https://doi.org/10.1080/15427951.2004.10129088
https://doi.org/10.1080/15427951.2004.10129088
https://doi.org/10.1080/15427951.2004.10129088
https://www.jstor.org/stable/24529203
https://doi.org/10.1093/oxfordjournals.molbev.a025959
https://doi.org/10.1093/oxfordjournals.molbev.a025959
https://doi.org/10.1093/oxfordjournals.molbev.a025959
https://doi.org/10.1093/oxfordjournals.molbev.a025959
https://doi.org/10.1126/science.1062081
https://doi.org/10.1126/science.1062081
https://doi.org/10.1126/science.1062081
https://doi.org/10.1126/science.1062081
https://doi.org/10.1073/pnas.0335980100
https://doi.org/10.1073/pnas.0335980100
https://doi.org/10.1073/pnas.0335980100
https://doi.org/10.1073/pnas.0335980100
https://doi.org/10.1080/09296170500055293
https://doi.org/10.1080/09296170500055293
https://doi.org/10.1080/09296170500055293
https://doi.org/10.1080/09296170500055293
https://doi.org/10.1103/PhysRevX.3.021006
https://doi.org/10.1103/PhysRevX.3.021006
https://doi.org/10.1103/PhysRevX.3.021006
https://doi.org/10.1103/PhysRevX.3.021006
https://doi.org/10.1371/journal.pcbi.1002173
https://doi.org/10.1371/journal.pcbi.1002173
https://doi.org/10.1371/journal.pcbi.1002173
https://doi.org/10.1371/journal.pcbi.1002173
https://doi.org/10.1093/nar/gkr711
https://doi.org/10.1093/nar/gkr711
https://doi.org/10.1093/nar/gkr711
https://doi.org/10.1093/nar/gkr711
https://doi.org/10.1093/gbe/evt002
https://doi.org/10.1093/gbe/evt002
https://doi.org/10.1093/gbe/evt002
https://doi.org/10.1093/gbe/evt002
https://doi.org/10.1073/pnas.0903206106
https://doi.org/10.1073/pnas.0903206106
https://doi.org/10.1073/pnas.0903206106
https://doi.org/10.1073/pnas.0903206106
https://doi.org/10.1007/s10955-011-0229-4
https://doi.org/10.1007/s10955-011-0229-4
https://doi.org/10.1007/s10955-011-0229-4
https://doi.org/10.1007/s10955-011-0229-4
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1073/pnas.1319166111
https://doi.org/10.1073/pnas.1319166111
https://doi.org/10.1073/pnas.1319166111
https://doi.org/10.1073/pnas.1319166111
https://doi.org/10.1209/0295-5075/96/50003
https://doi.org/10.1209/0295-5075/96/50003
https://doi.org/10.1209/0295-5075/96/50003
https://doi.org/10.1209/0295-5075/96/50003
https://doi.org/10.1073/pnas.1420946112
https://doi.org/10.1073/pnas.1420946112
https://doi.org/10.1073/pnas.1420946112
https://doi.org/10.1073/pnas.1420946112
https://doi.org/10.1371/journal.pone.0015032
https://doi.org/10.1371/journal.pone.0015032
https://doi.org/10.1371/journal.pone.0015032
https://doi.org/10.1371/journal.pone.0015032
https://doi.org/10.1073/pnas.1115960108
https://doi.org/10.1073/pnas.1115960108
https://doi.org/10.1073/pnas.1115960108
https://doi.org/10.1073/pnas.1115960108
https://doi.org/10.1076/jqul.8.3.165.4101
https://doi.org/10.1076/jqul.8.3.165.4101
https://doi.org/10.1076/jqul.8.3.165.4101
https://doi.org/10.1076/jqul.8.3.165.4101
https://doi.org/10.1093/nar/gkn668
https://doi.org/10.1093/nar/gkn668
https://doi.org/10.1093/nar/gkn668
https://doi.org/10.1093/nar/gkn668
https://doi.org/10.1371/journal.pgen.1000344
https://doi.org/10.1371/journal.pgen.1000344
https://doi.org/10.1371/journal.pgen.1000344
https://doi.org/10.1371/journal.pgen.1000344
https://doi.org/10.1016/j.ins.2004.03.006
https://doi.org/10.1016/j.ins.2004.03.006
https://doi.org/10.1016/j.ins.2004.03.006
https://doi.org/10.1016/j.ins.2004.03.006
https://doi.org/10.1103/PhysRevLett.114.238701
https://doi.org/10.1103/PhysRevLett.114.238701
https://doi.org/10.1103/PhysRevLett.114.238701
https://doi.org/10.1103/PhysRevLett.114.238701
https://doi.org/10.1016/j.physa.2011.05.003
https://doi.org/10.1016/j.physa.2011.05.003
https://doi.org/10.1016/j.physa.2011.05.003
https://doi.org/10.1016/j.physa.2011.05.003
https://doi.org/10.1088/1367-2630/16/11/113010
https://doi.org/10.1088/1367-2630/16/11/113010
https://doi.org/10.1088/1367-2630/16/11/113010
https://doi.org/10.1088/1367-2630/16/11/113010
https://doi.org/10.1111/j.1461-0248.2007.01050.x
https://doi.org/10.1111/j.1461-0248.2007.01050.x
https://doi.org/10.1111/j.1461-0248.2007.01050.x
https://doi.org/10.1111/j.1461-0248.2007.01050.x
https://doi.org/10.1016/j.jtbi.2012.07.030
https://doi.org/10.1016/j.jtbi.2012.07.030
https://doi.org/10.1016/j.jtbi.2012.07.030
https://doi.org/10.1016/j.jtbi.2012.07.030
https://doi.org/10.1038/s41598-018-27712-7
https://doi.org/10.1038/s41598-018-27712-7
https://doi.org/10.1038/s41598-018-27712-7
https://doi.org/10.1038/s41598-018-27712-7
https://doi.org/10.1371/journal.pone.0014139
https://doi.org/10.1371/journal.pone.0014139
https://doi.org/10.1371/journal.pone.0014139
https://doi.org/10.1371/journal.pone.0014139
https://doi.org/10.1103/PhysRevB.74.184430
https://doi.org/10.1103/PhysRevB.74.184430
https://doi.org/10.1103/PhysRevB.74.184430
https://doi.org/10.1103/PhysRevB.74.184430
https://doi.org/10.1038/srep05890
https://doi.org/10.1038/srep05890
https://doi.org/10.1038/srep05890
https://doi.org/10.1038/srep05890
https://doi.org/10.1103/PhysRevLett.120.048301
https://doi.org/10.1103/PhysRevLett.120.048301
https://doi.org/10.1103/PhysRevLett.120.048301
https://doi.org/10.1103/PhysRevLett.120.048301



