36 research outputs found

    Study of the Eutectoid Transformation in Nodular Cast Irons in Relation to Solidification Microsegregation

    Get PDF
    Eutectoid transformation in cast irons may proceed in the stable or the metastable systems giving ferrite and graphite for the former and pearlite for the latter. The present work demonstrates that composition profiles across ferrite/pearlite boundaries are smooth and similar to those issued from the solidification step. No trace of long-range diffusion of substitutional solutes due to austenite decomposition could be observed. In turn, this ascertains that both stable and metastable transformations proceed with the product matrix—either ferrite opearlite—inheriting the parent austenite content in substitutional solutes. This result sustains a physical model for eutectoid transformation based on the so-called local para-equilibrium which is commonly used for describing solid-state transformation in steels

    What impacts of climate change on surface water in France by 2070? Results of the Explore2070 project in metropolitan France and overseas departments

    No full text
    International audienceLes questions relatives à la disponibilité et à la gestion de l'eau concentreront l'essentiel des mesures d'adaptation qui seront prises dans les décennies à venir pour faire face aux conséquences des changements climatiques. Ces mesures devront également prendre en compte les évolutions socio-économiques, en termes de démographie, d'aménagement du territoire et de politiques publiques (agriculture, énergie, transports, etc.). Il est dès lors primordial pour les décideurs et gestionnaires de quantifier les évolutions socio-économiques possibles, ainsi que le devenir de la ressource en eau et de sa variabilité temporelle et spatiale. C'est dans ce contexte que le projet Explore2070 avait pour objectif d'évaluer les impacts possibles des changements climatiques et socio-économiques futurs sur les grandes masses d'eau (surface, souterrain, littoral) et la biodiversité, en France métropolitaine et sur les départements d'Outre-mer (Guadeloupe, Guyane, Martinique et Réunion). Piloté par le Ministère de l'Ecologie (MEDDTL), ce projet a rassemblé de nombreux bureaux d'études et instituts de recherche pour dresser un panorama général des évolutions à attendre à l'horizon 2070. Par son ampleur et la variété de ses objectifs, ce projet doit permettre de répondre à de nombreuses questions des gestionnaires et de mieux apprécier les enjeux de ces évolutions. Dans la suite, nous présentons les travaux réalisés spécifiquement sur la quantification des évolutions des eaux de surface. Nous détaillerons dans ce qui suit la démarche générale de modélisation proposée, la nature des résultats obtenus, ainsi que la façon dont les incertitudes ont été quantifiées. Ce dernier point est indispensable pour aider à la prise de décision dans un avenir incertain. / Water availability and water management will be the focus of most of the adaptation measures that will be taken in the next decades to face the consequences of climate change. These measures will have to account for the socio-economic evolutions, in terms of population size, town and country planning, as well as public policies (agriculture, energy, transports, etc.). It is therefore essential for decision makers and managers to be able to quantify the possible socio-economic evolutions together with the evolution of water resources and their temporal and spatial variability. In this context, the Explore2070 project aimed at evaluating the possible impacts of future climate and socio-economic changes on water bodies (surface water, groundwater and coastal water) and biodiversity, in metropolitan France and overseas departments (Guadeloupe, Martinique, French Guyana, and Réunion Island). The project was managed by the French Ministry of Ecology (MEDDTL) and gathered several consultancies and research institutes to establish a general overview of the expected evolutions by 2070. Through both the extent and the variety of the project’s objectives, Explore2070 will provide answers to many questions raised by managers and better evaluate the stakes related to these evolutions. In the following, we present the work done specifically to quantify the evolution of surface water. The general modelling approach, the type of results and the way uncertainties were quantified are detailed. Uncertainty quantification is essential to help decision making in an uncertain future

    Phases and properties of quark matter

    Full text link
    I review recent developments in finite temperature lattice QCD which are useful for the study of heavy-ion collisions. I pay particular attention to studies of the equation of state and the light they throw on conformal symmetry and the large N_c limit, and to the structure of the phase diagram for N_f=2+1.Comment: Plenary talk at Quark Matter 2008, Jaipur, India (8 pages, 5 figures

    A reaction norm model for genomic selection using high-dimensional genomic and environmental data

    Get PDF
    In most agricultural crops the effects of genes on traits are modulated by environmental conditions, leading to genetic by environmental interaction (G × E). Modern genotyping technologies allow characterizing genomes in great detail and modern information systems can generate large volumes of environmental data. In principle, G × E can be accounted for using interactions between markers and environmental covariates (ECs). However, when genotypic and environmental information is high dimensional, modeling all possible interactions explicitly becomes infeasible. In this article we show how to model interactions between high-dimensional sets of markers and ECs using covariance functions. The model presented here consists of (random) reaction norm where the genetic and environmental gradients are described as linear functions of markers and of ECs, respectively. We assessed the proposed method using data from Arvalis, consisting of 139 wheat lines genotyped with 2,395 SNPs and evaluated for grain yield over 8 years and various locations within northern France. A total of 68 ECs, defined based on five phases of the phenology of the crop, were used in the analysis. Interaction terms accounted for a sizable proportion (16 %) of the within-environment yield variance, and the prediction accuracy of models including interaction terms was substantially higher (17–34 %) than that of models based on main effects only. Breeding for target environmental conditions has become a central priority of most breeding programs. Methods, like the one presented here, that can capitalize upon the wealth of genomic and environmental information available, will become increasingly important

    Gender differences in the use of cardiovascular interventions in HIV-positive persons; the D:A:D Study

    Get PDF
    Peer reviewe

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries
    corecore