26 research outputs found

    Obtaining the equation of motion for a fermionic particle in a generalized Lorentz-violating system framework

    Full text link
    Using a generalized procedure for obtaining the dispersion relation and the equation of motion for a propagating fermionic particle, we examine previous claims for a preferred axis at nμn_{\mu}((1,0,0,1)\equiv(1,0,0,1)), n2=0n^{2}=0 embedded in the framework of very special relativity (VSR). We show that, in a relatively high energy scale, the corresponding equation of motion is reduced to a conserving lepton number chiral equation previously predicted in the literature. Otherwise, in a relatively low energy scale, the equation is reduced to the usual Dirac equation for a free propagating fermionic particle. It is accomplished by the suggestive analysis of some special cases where a nonlinear modification of the action of the Lorentz group is generated by the addition of a modified conformal transformation which, meanwhile, preserves the structure of the ordinary Lorentz algebra in a very peculiar way. Some feasible experiments, for which Lorentz violating effects here pointed out may be detectable, are suggested.Comment: 10 page

    New CP Violation in Neutrino Oscillations

    Get PDF
    Measurements of CP--violating observables in neutrino oscillation experiments have been studied in the literature as a way to determine the CP--violating phase in the mixing matrix for leptons. Here we show that such observables also probe new neutrino interactions in the production or detection processes. Genuine CP violation and fake CP violation due to matter effects are sensitive to the imaginary and real parts of new couplings. The dependence of the CP asymmetry on source--detector distance is different from the standard one and, in particular, enhanced at short distances. We estimate that future neutrino factories will be able to probe in this way new interactions that are up to four orders of magnitude weaker than the weak interactions. We discuss the possible implications for models of new physics.Comment: ReVTeX, 28 pages, 7 figues. v2: Modifications in section VIII to reflect the fact that some of the couplings that were discussed in this section are irrelevant to our analysis (as pointed out in hep-ph/0112329); Added a discussion in section IX of the relevance of other future experiments that will search for lepton flavor violatio

    A general analysis with trilinear and bilinear R-parity violating couplings in the light of recent SNO data

    Full text link
    We analyse an extension of the minimal supersymmetric standard model including the dominant trilinear and bilinear R-parity violating contributions. We take the trilinear terms from the superpotential and the bilinear terms from the superpotential as well as the scalar potential. We compute the neutrino masses induced by those couplings and determine the allowed ranges of the R-parity violating parameters that are consistent with the latest SNO results, atmospheric data and the Chooz constraint. We also estimate the effective mass for neutrinoless double beta decay in such scenarios.Comment: 7 pages, Revtex, 1 PS figur

    Reconstructing Seesaws

    Full text link
    We explore some aspects of "reconstructing" the heavy singlet sector of supersymmetric type I seesaw models, for two, three or four singlets. We work in the limit where one light neutrino is massless. In an ideal world, where selected coefficients of the TeV-scale effective Lagrangian could be measured with arbitrary accuracy, the two-singlet case can be reconstructed, two three or more singlets can be differentiated, and an inverse seesaw with four singlets can be reconstructed. In a more realistic world, we estimate \ell_\a \to \ell_\b \gamma expectations with a "Minimal-Flavour-Violation-like" ansatz, which gives a relation between ratios of the three branching ratios. The two singlet model predicts a discrete set of ratios.Comment: 14 page

    Phenomenology of Maximal and Near-Maximal Lepton Mixing

    Get PDF
    We study the phenomenological consequences of maximal and near-maximal mixing of the electron neutrino with other (xx=tau and/or muon) neutrinos. We describe the deviations from maximal mixing in terms of a parameter ϵ12sin2θex\epsilon\equiv1-2\sin^2\theta_{ex} and quantify the present experimental status for ϵ<0.3|\epsilon|<0.3. We find that the global analysis of solar neutrino data allows maximal mixing with confidence level better than 99% for 10810^{-8} eV^2\lsim\Delta m^2\lsim2\times10^{-7} eV2^2. In the mass ranges \Delta m^2\gsim 1.5\times10^{-5} eV2^2 and 4×10104\times10^{-10} eV^2\lsim\Delta m^2\lsim2\times10^{-7} eV2^2 the full interval ϵ<0.3|\epsilon|<0.3 is allowed within 4σ\sigma(99.995 % CL). We suggest ways to measure ϵ\epsilon in future experiments. The observable that is most sensitive to ϵ\epsilon is the rate [NC]/[CC] in combination with the Day-Night asymmetry in the SNO detector. With theoretical and statistical uncertainties, the expected accuracy after 5 years is Δϵ0.07\Delta \epsilon\sim 0.07. We also discuss the effects of maximal and near-maximal νe\nu_e-mixing in atmospheric neutrinos, supernova neutrinos, and neutrinoless double beta decay.Comment: 49 pages Latex file using RevTeX. 16 postscript figures included. ( Fig.2 and Fig.4 bitmapped for compression,better resolution at http://ific.uv.es/~pppac/). Improved presentation: some statements included and labels added in figures. Some misprint corrected. Final version to appear in Phys. Rev D. Report no: IFIC/00-40, IASSNS-HEP-00-5

    More on deviation from bi-maximal neutrino mixing

    Full text link
    We study the case of UlTU^T_l presenting the exact bi-maximal mixing form with UνU_\nu inducing the deviation from the bi-maximal mixing in the final form of the Pontecorvo-Maki-Nakagawa-Sakata neutrino mixing, UPMNS=UlTUνU_{PMNS}=U^T_l U_\nu. We will show that such possibility will lead to a democratic texture for the charged lepton mass matrix and to a neutrino mass matrix with four null entries.Comment: a scenario realizing our proposal is added, new references added, to be published in J.Phys.

    Effects of new physics in neutrino oscillations in matter

    Get PDF
    A new flavor changing electron neutrino interaction with matter would always dominate the nu_e oscillation probability at sufficiently high neutrino energies. Being suppressed by theta_{13}, the energy scale at which the new effect starts to be relevant may be within the reach of realistic experiments, where the peculiar dependence of the signal with energy could give rise to a clear signature in the nu_e --> nu_tau channel. The latter could be observed by means of a coarse large magnetized detector by exploiting tau --> mu decays. We discuss the possibility of identifying or constraining such effects with a high energy neutrino factory. We also comment on the model independent limits on them.Comment: 11 pages, 5 figure

    Suppressing the μ\mu and neutrino masses by a superconformal force

    Get PDF
    The idea of Nelson and Strassler to obtain a power law suppression of parameters by a superconformal force is applied to understand the smallness of the μ\mu parameter and neutrino masses in R-parity violating supersymmetric standard models. We find that the low-energy sector should contain at least another pair of Higgs doublets, and that a suppression of \lsim O(10^{-13}) for the μ\mu parameter and neutrino masses can be achieved generically. The superpotential of the low-energy sector happens to possess an anomaly-free discrete R-symmetry, either R3R_3 or R6R_6, which naturally suppresses certain lepton-flavor violating processes, the neutrinoless double beta decays and also the electron electric dipole moment. We expect that the escape energy of the superconformal sector is \lsim O(10) TeV so that this sector will be observable at LHC. Our models can accommodate to a large mixing among neutrinos and give the same upper bound of the lightest Higgs mass as the minimal supersymmetric standard model.Comment: 24 page

    Testing neutrino mixing at future collider experiments

    Get PDF
    Low energy supersymmetry with bilinear breaking of R-parity leads to a weak-scale seesaw mechanism for the atmospheric neutrino scale and a radiative mechanism for the solar neutrino scale. The model has striking implications for collider searches of supersymmetric particles. Assuming that the lightest SUSY particle is the lightest neutralino we demonstrate that (i) The neutralino decays inside the detector even for tiny neutrino masses. (ii) Measurements of the neutrino mixing angles lead to predictions for the ratios of various neutralino branching ratios implying an independent test of neutrino physics at future colliders, such as the Large Hadron Collider or a Linear Collider.Comment: LaTex, 35 pages, 20 figures included, version 2, section on model shortened, Fig. 13 replaced, typos corrected, version to appear in Phys.Rev.

    Neutrinoless Double Beta Decay from Singlet Neutrinos in Extra Dimensions

    Get PDF
    We study the model-building conditions under which a sizeable 0νββ0\nu\beta\beta-decay signal to the recently reported level of~0.4 eV is due to Kaluza--Klein singlet neutrinos in theories with large extra dimensions. Our analysis is based on 5-dimensional singlet-neutrino models compactified on an S1/Z2S^1/Z_2 orbifold, where the Standard--Model fields are localized on a 3-brane. We show that a successful interpretation of a positive signal within the above minimal 5-dimensional framework would require a non-vanishing shift of the 3-brane from the orbifold fixed points by an amount smaller than the typical scale (100 MeV)1^{-1} characterizing the Fermi nuclear momentum. The resulting 5-dimensional models predict a sizeable effective Majorana-neutrino mass that could be several orders of magnitude larger than the light neutrino masses. Most interestingly, the brane-shifted models with only one bulk sterile neutrino also predict novel trigonometric textures leading to mass scenarios with hierarchical active neutrinos and large νμ\nu_\mu-ντ\nu_\tau and νe\nu_e-νμ\nu_\mu mixings that can fully explain the current atmospheric and solar neutrino data.Comment: 33 pages, LaTeX, minor rewordings, references adde
    corecore