79 research outputs found

    Responses of earthworm communities to crop residue management after inoculation of the earthworm Lumbricus terrestris (Linnaeus, 1758)

    Get PDF
    Earthworms are important for soil functioning in arable cropping systems and earthworm species differ in their response to soil tillage and crop residue management. Lumbricus terrestris (Linnaeus, 1758) are rare in intensively tilled arable fields. In two parallel field trials with either non-inversion (NIT) or conventional tillage (CT), we investigated the feasibility of inoculating L. terrestris under different crop residue management (amounts and placement). Simultaneously, we monitored the response of the existing earthworm communities to L. terrestris inoculation and to crop residue treatments in terms of earthworm density, species diversity and composition, ecological groups and functional diversity. L. terrestris densities were not affected by residue management. We were not able to infer effects of the inoculation on the existing earthworm communities since L. terrestris also colonized non-inoculated plots. In NIT and two years after trial establishment, the overall native earthworm density was 1.4 and 1.6 times higher, and the epigeic density 2.5 times higher, in treatments with highest residue application (S100) compared to 25% (S25) or no (S0) crop residues, respectively. Residue management did not affect earthworm species composition, nor the functional trait diversity and composition, except for an increase of the community weighted means of bifide typhlosolis in S0 compared to S100. In CT, however, crop residues did have a strong effect on species composition, ecological groups and functional traits. Without crop residues (S0), epigeic density was respectively 20 and 30% lower than with crop residues placed on the soil surface (S100) or incorporated (I100). Community composition was clearly affected by crop residues. Trait diversity was 2.6 to 3 times larger when crop residues were provided, irrespective of placement. Crop residues in CT also resulted in heavier earthworms and in a shift in the community towards species with a thicker epidermis and cuticle, a feather typhlosolis shape, and a higher average cocoon production rate. We conclude that earthworm communities under conventional tillage respond more strongly to the amount of crop residue than to its placement. Under non-inversion tillage, crop residue amounts affected earthworm communities, but to a smaller degree than under conventional tillage

    Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe

    Get PDF
    Soil quality is defined as the capacity of the soil to perform multiple functions, and can be assessed by measuring soil chemical, physical and biological parameters. Among soil parameters, labile organic carbon is considered to have a primary role in many soil functions related to productivity and environmental resilience. Our study aimed at assessing the suitability of different labile carbon fractions, namely dissolved organic carbon (DOC), hydrophilic DOC (Hy-DOC), permanganate oxidizable carbon (POXC, also referred to as Active Carbon), hot water extractable carbon (HWEC) and particulate organic matter carbon (POMC) as soil quality indicators in agricultural systems. To do so, we tested their sensitivity to two agricultural management factors (tillage and organic matter input) in 10 European long-term field experiments (LTEs), and we assessed the correlation of the different labile carbon fractions with physical, chemical and biological soil quality indicators linked to soil functions. We found that reduced tillage and high organic matter input increase concentrations of labile carbon fractions in soil compared to conventional tillage and low organic matter addition, respectively. POXC and POMC were the most sensitive fractions to both tillage and fertilization across the 10 European LTEs. In addition, POXC was the labile carbon fraction most positively correlated with soil chemical (total organic carbon, total nitrogen, and cation exchange capacity), physical (water stable aggregates, water holding capacity, bulk density) and biological soil quality indicators (microbial biomass carbon and nitrogen, and soil respiration). We conclude that POXC represents a labile carbon fraction sensitive to soil management and that is the most informative about total soil organic matter, nutrients, soil structure, and microbial pools and activity, parameters commonly used as indicators of various soil functions, such as C sequestration, nutrient cycling, soil structure formation and soil as a habitat for biodiversity. Moreover, POXC measurement is relatively cheap, fast and easy. Therefore, we suggest measuring POXC as the labile carbon fraction in soil quality assessment schemes in addition to other valuable soil quality indicators.</p

    Nematode-based indices in soil ecology: Application, utility, and future directions

    Get PDF
    14 Pág.The health and functioning of soil ecosystems are the foundation of sustainable food production and land management. Of key importance in achieving sustainability, is the frequent measurement of soil health, and indices based on the community structure of nematodes are amongst the most widely used toolsets by soil ecologists. Thirty years after the development of the Maturity Index, we aimed to evaluate the application, utility, and future directions of nematode-based indices (NBIs). This review focused on NBIs that are calculated using the coloniser-persister classification of nematodes. Data from 672 empirical studies in terrestrial environments revealed that the NBIs presented a dissimilar usage trend. The Channel Index and Metabolic Footprints showed the strongest increase in application rates over time, thus indicating a greater interest in studying decomposition pathways and ecosystem functioning, respectively. Furthermore, nematode-based indices were mostly applied in agricultural systems associated with herbaceous crops and in studies investigating, for example, soil nutrient enrichment following manure and/or inorganic fertilizer application. We further provide a framework for selecting a focus-orientated subset of NBIs for testing hypotheses based on the underlying ecological mechanisms. Also, we highlight important considerations, including the unexpected behaviour of some nematode taxa, in the interpretation of NBIs. The improvement of NBIs relies on advancing our understanding of the autecology of nematodes. Finally, we deliver insight into the further development of NBIs considering recent methodological advancements. We highlight that NBIs have been and might become increasingly important in providing valuable information on soil ecosystem health and functioning, especially considering the urgent need for more sustainable land use.The contribution of JHS was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — :— Project no. 420414676: “The self-regulatory potential of agro-ecosystems: Using nematodes as indicators for legume disease suppressive soils”.Peer reviewe

    Effects of agricultural management practices on soil quality : A review of long-term experiments for Europe and China

    Get PDF
    In this paper we present effects of four paired agricultural management practices (organic matter (OM) addition versus no organic matter input, no-tillage (NT) versus conventional tillage, crop rotation versus monoculture, and organic agriculture versus conventional agriculture) on five key soil quality indicators, i.e., soil organic matter (SOM) content, pH, aggregate stability, earthworms (numbers) and crop yield. We have considered organic matter addition, no-tillage, crop rotation and organic agriculture as “promising practices”; no organic matter input, conventional tillage, monoculture and conventional farming were taken as the respective references or “standard practice” (baseline). Relative effects were analysed through indicator response ratio (RR) under each paired practice. For this we considered data of 30 long-term experiments collected from 13 case study sites in Europe and China as collated in the framework of the EU-China funded iSQAPER project. These were complemented with data from 42 long-term experiments across China and 402 observations of long-term trials published in the literature. Out of these, we only considered experiments covering at least five years. The results show that OM addition favourably affected all the indicators under consideration. The most favourable effect was reported on earthworm numbers, followed by yield, SOM content and soil aggregate stability. For pH, effects depended on soil type; OM input favourably affected the pH of acidic soils, whereas no clear trend was observed under NT. NT generally led to increased aggregate stability and greater SOM content in upper soil horizons. However, the magnitude of the relative effects varied, e.g. with soil texture. No-tillage practices enhanced earthworm populations, but not where herbicides or pesticides were applied to combat weeds and pests. Overall, in this review, yield slightly decreased under NT. Crop rotation had a positive effect on SOM content and yield; rotation with ley very positively influenced earthworms’ numbers. Overall, crop rotation had little impact on soil pH and aggregate stability − depending on the type of intercrop; alternatively, rotation of arable crops only resulted in adverse effects. A clear positive trend was observed for earthworm abundance under organic agriculture. Further, organic agriculture generally resulted in increased aggregate stability and greater SOM content. Overall, no clear trend was found for pH; a decrease in yield was observed under organic agriculture in this review

    Bidirectional Associations Between Sibling Relationships and Parental Support During Adolescence

    Get PDF
    Sibling relationships and parental support are important for adolescents’ development and well-being, yet both are likely to change during adolescence. Since adolescents participate in both the sibling relationship and the parent–child relationship, we can expect sibling relationships and parental support to be associated with each other. Theoretically, it can be expected that there is either a spillover from one relationship to another (congruence hypothesis) or that one relationship can compensate for the other (compensation hypothesis). However, research examining these associations in adolescence is limited. The present study longitudinally investigated the bidirectional associations between sibling relationships and parental support during adolescence. For five consecutive years, data were collected using self-reports of 428 families, consisting of a father, a mother, and two adolescent siblings. The mean ages of the first-born (52.8% males) and second-born (47.7% males) were 15 and 13 years at T1, respectively. For the second-born siblings, prospective associations were found between sibling relationships and adolescent-reported parental support in early adolescence, with no differences between same-sex and mixed-sex dyads. These associations were not found for first-born siblings or for parents’ reports of support. The findings suggest a spillover from the sibling relationship to adolescent-reported parental support only in early adolescence. Findings and implications are discussed in terms of the congruence/spillover and the compensation hypothesis

    Glucose transporter-1 deficiency syndrome: the expanding clinical and genetic spectrum of a treatable disorder

    Get PDF
    Glucose transporter-1 deficiency syndrome is caused by mutations in the SLC2A1 gene in the majority of patients and results in impaired glucose transport into the brain. From 2004-2008, 132 requests for mutational analysis of the SLC2A1 gene were studied by automated Sanger sequencing and multiplex ligation-dependent probe amplification. Mutations in the SLC2A1 gene were detected in 54 patients (41%) and subsequently in three clinically affected family members. In these 57 patients we identified 49 different mutations, including six multiple exon deletions, six known mutations and 37 novel mutations (13 missense, five nonsense, 13 frame shift, four splice site and two translation initiation mutations). Clinical data were retrospectively collected from referring physicians by means of a questionnaire. Three different phenotypes were recognized: (i) the classical phenotype (84%), subdivided into early-onset (<2 years) (65%) and late-onset (18%); (ii) a non-classical phenotype, with mental retardation and movement disorder, without epilepsy (15%); and (iii) one adult case of glucose transporter-1 deficiency syndrome with minimal symptoms. Recognizing glucose transporter-1 deficiency syndrome is important, since a ketogenic diet was effective in most of the patients with epilepsy (86%) and also reduced movement disorders in 48% of the patients with a classical phenotype and 71% of the patients with a non-classical phenotype. The average delay in diagnosing classical glucose transporter-1 deficiency syndrome was 6.6 years (range 1 month-16 years). Cerebrospinal fluid glucose was below 2.5 mmol/l (range 0.9-2.4 mmol/l) in all patients and cerebrospinal fluid : blood glucose ratio was below 0.50 in all but one patient (range 0.19-0.52). Cerebrospinal fluid lactate was low to normal in all patients. Our relatively large series of 57 patients with glucose transporter-1 deficiency syndrome allowed us to identify correlations between genotype, phenotype and biochemical data. Type of mutation was related to the severity of mental retardation and the presence of complex movement disorders. Cerebrospinal fluid : blood glucose ratio was related to type of mutation and phenotype. In conclusion, a substantial number of the patients with glucose transporter-1 deficiency syndrome do not have epilepsy. Our study demonstrates that a lumbar puncture provides the diagnostic clue to glucose transporter-1 deficiency syndrome and can thereby dramatically reduce diagnostic delay to allow early start of the ketogenic die

    Guidelines for Genome-Scale Analysis of Biological Rhythms

    Get PDF
    Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them
    corecore