5,554 research outputs found
Chiral transition and deconfinement in N_f = 2 QCD
The transition is studied by means of a disorder parameter detecting
condensation of magnetic monopoles in the vacuum. The deconfining transition is
found to coincide with the chiral transition and the susceptibility \rho,
related to the disorder parameter, is consistent with a first order phase
transition.Comment: 3 pages, 2 figures. Poster presented at Lattice2004(topology),
Fermilab, June 21-26, 200
Mutual Inductance Route to Paramagnetic Meissner Effect in 2D Josephson Junction Arrays
We simulate two-dimensional Josephson junction arrays, including full mutual-
inductance effects, as they are cooled below the transition temperature in a
magnetic field. We show numerical simulations of the array magnetization as a
function of position, as detected by a scanning SQUID which is placed at a
fixed height above the array. The calculated magnetization images show striking
agreement with the experimental images obtained by A. Nielsen et al. The
average array magnetization is found to be paramagnetic for many values of the
applied field, confirming that paramagnetism can arise from magnetic screening
in multiply-connected superconductors without the presence of d-wave
superconductivity.Comment: REVTeX 3.1, 5 pages, 5 figure
Evidence for impurity-induced frustration in La2CuO4
Zero-field muon spin rotation and magnetization measurements were performed
in La2Cu{1-x}MxO4, for 0<x< 0.12, where Cu2+ is replaced either by M=Zn2+ or by
M=Mg2+ spinless impurity. It is shown that while the doping dependence of the
sublattice magnetization (M(x)) is nearly the same for both compounds, the
N\'eel temperature (T_N(x)) decreases unambiguously more rapidly in the
Zn-doped compound. This difference, not taken into account within a simple
dilution model, is associated with the frustration induced by the Zn2+ impurity
onto the Cu2+ antiferromagnetic lattice. In fact, from T_N(x) and M(x) the spin
stiffness is derived and found to be reduced by Zn doping more significantly
than expected within a dilution model. The effect of the structural
modifications induced by doping on the exchange coupling is also discussed.Comment: 4 pages, 4 figure
Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity
We introduce and study the problem Ordered Level Planarity which asks for a
planar drawing of a graph such that vertices are placed at prescribed positions
in the plane and such that every edge is realized as a y-monotone curve. This
can be interpreted as a variant of Level Planarity in which the vertices on
each level appear in a prescribed total order. We establish a complexity
dichotomy with respect to both the maximum degree and the level-width, that is,
the maximum number of vertices that share a level. Our study of Ordered Level
Planarity is motivated by connections to several other graph drawing problems.
Geodesic Planarity asks for a planar drawing of a graph such that vertices
are placed at prescribed positions in the plane and such that every edge is
realized as a polygonal path composed of line segments with two adjacent
directions from a given set of directions symmetric with respect to the
origin. Our results on Ordered Level Planarity imply -hardness for any
with even if the given graph is a matching. Katz, Krug, Rutter and
Wolff claimed that for matchings Manhattan Geodesic Planarity, the case where
contains precisely the horizontal and vertical directions, can be solved in
polynomial time [GD'09]. Our results imply that this is incorrect unless
. Our reduction extends to settle the complexity of the Bi-Monotonicity
problem, which was proposed by Fulek, Pelsmajer, Schaefer and
\v{S}tefankovi\v{c}.
Ordered Level Planarity turns out to be a special case of T-Level Planarity,
Clustered Level Planarity and Constrained Level Planarity. Thus, our results
strengthen previous hardness results. In particular, our reduction to Clustered
Level Planarity generates instances with only two non-trivial clusters. This
answers a question posed by Angelini, Da Lozzo, Di Battista, Frati and Roselli.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
The squashed entanglement of the noiseless quantum Gaussian attenuator and amplifier
We determine the maximum squashed entanglement achievable between sender and
receiver of the noiseless quantum Gaussian attenuators and amplifiers and we
prove that it is achieved sending half of an infinitely squeezed two-mode
vacuum state. The key ingredient of the proof is a lower bound to the squashed
entanglement of the quantum Gaussian states obtained applying a two-mode
squeezing operation to a quantum thermal Gaussian state tensored with the
vacuum state. This is the first lower bound to the squashed entanglement of a
quantum Gaussian state and opens the way to determine the squashed entanglement
of all quantum Gaussian channels. Moreover, we determine the classical squashed
entanglement of the quantum Gaussian states above and show that it is strictly
larger than their squashed entanglement. This is the first time that the
classical squashed entanglement of a mixed quantum Gaussian state is
determined
Recognizing and Drawing IC-planar Graphs
IC-planar graphs are those graphs that admit a drawing where no two crossed
edges share an end-vertex and each edge is crossed at most once. They are a
proper subfamily of the 1-planar graphs. Given an embedded IC-planar graph
with vertices, we present an -time algorithm that computes a
straight-line drawing of in quadratic area, and an -time algorithm
that computes a straight-line drawing of with right-angle crossings in
exponential area. Both these area requirements are worst-case optimal. We also
show that it is NP-complete to test IC-planarity both in the general case and
in the case in which a rotation system is fixed for the input graph.
Furthermore, we describe a polynomial-time algorithm to test whether a set of
matching edges can be added to a triangulated planar graph such that the
resulting graph is IC-planar
A critical comparison of different definitions of topological charge on the lattice
A detailed comparison is made between the field-theoretic and geometric
definitions of topological charge density on the lattice. Their
renormalizations with respect to continuum are analysed. The definition of the
topological susceptibility, as used in chiral Ward identities, is reviewed.
After performing the subtractions required by it, the different lattice methods
yield results in agreement with each other. The methods based on cooling and on
counting fermionic zero modes are also discussed.Comment: 12 pages (LaTeX file) + 7 (postscript) figures. Revised version.
Submitted to Phys. Rev.
Trayectoria a largo plazo de algunas especies de Elasmobranquios en los mares de Toscana (Mediterráneo noroccidental) a través de 50 años de datos de captura
The time series of elasmobranch catch rates off the Tuscany coasts (NW Mediterranean) were investigated by means of min/max auto-correlation factor analysis in order to estimate variations in population abundance and evaluate the influence of environmental and anthropogenic factors. The analyses highlighted a general decreasing trend in the catch rates of sharks and skates from 1961 to the mid-1990s, mainly influenced by the increase in fishing effort. Since the 1990s, the EU Common Fishery Policy for the Mediterranean has promoted the reduction of fishing fleets through incentives to vessel demolition. The Porto S. Stefano trawl fleet has decreased by about 50%, leading to a decrease in fishing effort which seemed to be the most relevant factor affecting the increasing trend shown by the catch rates of Galeus melastomus, Scyliorhinus canicula and skates from 1991 to 2009. The elasmobranch assemblage did not undergo major shifts but the weighted frequency of occurrence shows that elasmobranchs were more frequent in the past. Particular caution should be paid in interpreting the recent rebound of some species as an early sign of recovery: trawl survey data and landing data show that over the last 50 years elasmobranch fauna have undergone a drastic decline and that recent rebounds are still far from a recovery to historical levels.Se investigaron las series históricas de datos de captura de algunas especies de Elasmobranquios en los mares de Toscana (Mediterráneo noroccidental), por medio del análisis de auto-correlación factorial MAFA, con el fin de evaluar las variaciones en la abundancia de poblaciones y la influencia de factores ambientales y antropogénicos. Los análisis permitieron poner en relieve una tendencia a la disminución, a partir de 1961 hasta la mitad de los años 1990, de las tasas de captura de las especies de tiburones y rayas demersales. Esta disminución parece ser debida principalmente al aumento del esfuerzo pesquero. Sin embargo, desde 1990 capacidad y actividad pesquera mostraron una tendencia a la disminución, como resultado de la PolÃtica Pesquera Común de la UE para el Mediterráneo. La flota de arrastre de Porto Santo Stefano disminuyó en un 50%; esta reducción parece ser el factor más importante que produjo un aumento en los indices de abundancia relativa de Galeus melastomus, Scyliorhinus canicula y de las rayas, desde 1991 a 2009. Sin embargo la composición en especies de los Elasmobranquios no ha mostrado evidentes cambios en el tiempo, a pesar de muchas especies que han sufrido una disminución en la frecuencia de occurrencia. Por lo tanto, la interpretación de estos resultados como señal de recuperación de las poblaciones de elasmobranquios, necesita de una precaución especial. De hecho durante los últimos 50 años la fauna de elasmobranquios en el Mediterráneo ha sufrido una drástica reducción y todavÃa no se está observando ninguna considerable señal de recuperación
Sen1 is recruited to replication forks via Ctf4 and Mrc1 and promotes genome stability
DNA replication and RNA transcription compete for the same substrate during S phase. Cells have evolved several mechanisms to minimize such conflicts. Here, we identify the mechanism by which the transcription termination helicase Sen1 associates with replisomes. We show that the N terminus of Sen1 is both sufficient and necessary for replisome association and that it binds to the replisome via the components Ctf4 and Mrc1. We generated a separation of function mutant, sen1-3, which abolishes replisome binding without affecting transcription termination. We observe that the sen1-3 mutants show increased genome instability and recombination levels. Moreover, sen1-3 is synthetically defective with mutations in genes involved in RNA metabolism and the S phase checkpoint. RNH1 overexpression suppresses defects in the former, but not the latter. These findings illustrate how Sen1 plays a key function at replication forks during DNA replication to promote fork progression and chromosome stability
Virtually Abelian Quantum Walks
We introduce quantum walks on Cayley graphs of non-Abelian groups. We focus
on the easiest case of virtually Abelian groups, and introduce a technique to
reduce the quantum walk to an equivalent one on an Abelian group with coin
system having larger dimension. We apply the technique in the case of two
quantum walks on virtually Abelian groups with planar Cayley graphs, finding
the exact solution.Comment: 10 pages, 3 figure
- …