Zero-field muon spin rotation and magnetization measurements were performed
in La2Cu{1-x}MxO4, for 0<x< 0.12, where Cu2+ is replaced either by M=Zn2+ or by
M=Mg2+ spinless impurity. It is shown that while the doping dependence of the
sublattice magnetization (M(x)) is nearly the same for both compounds, the
N\'eel temperature (T_N(x)) decreases unambiguously more rapidly in the
Zn-doped compound. This difference, not taken into account within a simple
dilution model, is associated with the frustration induced by the Zn2+ impurity
onto the Cu2+ antiferromagnetic lattice. In fact, from T_N(x) and M(x) the spin
stiffness is derived and found to be reduced by Zn doping more significantly
than expected within a dilution model. The effect of the structural
modifications induced by doping on the exchange coupling is also discussed.Comment: 4 pages, 4 figure