6,343 research outputs found

    Flow curvature effects on dynamic behaviour of a novel vertical axis tidal current turbine: numerical and experimental analysis

    Get PDF
    The paper deals with performances analysis of vertical axis turbine to exploit tidal marine currents. Flow curvature effects on performences of a novel vertical axis turbine have been investuigated. It has been shown that the flow curvature effect allows to design properly an accurate airfoil shape to increase turbine performances

    Improvement of heart rate recovery after exercise training in older people.

    Get PDF
    Twenty-four subjects aged 70 and older were retrospectively selected from our archives and screened for symptoms of cardiovascular disease. Baseline exercise test was negative for myocardial ischemia in all subjects. All subjects had completed an 8-week program, performed for a variety of indications and consisting of an aerobic physical training program including 30 minutes of cycling three times per week at 65% to 75% of maximum heart rate achieved at peak exercise test performed at enrollment, an educational intervention, dietary advice, and psychological support. All subjects underwent a cardiopulmonary exercise test (CPX) before and at the end of exercise training. At the end of each CPX, peak oxygen uptake (VO2peak), the rate of increase of ventilation per unit of increase of carbon dioxide production (VE/VCO2slope), and HRR were recorded. Twenty-five healthy subjects younger than 60 with no evidence of exercise-induced myocardial ischemia and not enrolled in any exercise training program were also retrospectively selected from our archives and used as a control group for analyzing HRR. These patients performed two exercise tests several weeks apart. Several studies have shown that changes in vagal tone can be used as an outcome tool that helps identify patients or subjects with or without cardiovascular disease at risk for a cardiovascular event, although the evidence of a prognostic value of HRR in older subjects without cardiovascular disease is rather poor. In this study, exercise training resulted in HRR improvement in healthy elderly subjects, suggesting that exercise training improves vagal/sympathetic balance in older subjects without cardiovascular disease as well. Whether the observed improvement in HRR may have long-term beneficial prognostic effects was not the aim of the study, although a beneficial effect might be postulated, in light of the Framingham dat

    Experimental validation of the exact analytical solution to the steady periodic heat transfer problem in a PCM layer

    Get PDF
    Phase change materials (PCM) are used in many industrial and residential applications for their advantageous characteristic of high capacity of latent thermal storage by means of an isothermal process. In this context, it is very useful to have predictive mathematical models for the analysis of the thermal performance and for the thermal design of these layers. In this work, an experimental validation of an analytical model that resolves the steady periodic heat transfer problem in a finite layer of PCM is presented. The experimental investigation was conducted employing a PCM with thermophysical and thermochemical behavior very close to those hypothesized in the formulation of the analytical model. For the evaluation of the thermophysical properties of the PCM sample used, an experimental procedure created by the authors was employed. In all tests realized in a sinusoidal and non-sinusoidal periodic regime, the comparison between the measured and calculated trends of the temperature at different sample heights and of the surface heat fluxes show an excellent agreement. Moreover, also having verified the analytical total stored energy, the analytical model constitutes a valid instrument for the evaluation of the latent and sensible contribution and the trend in time of the position of the bi-phase interface.The work was partially funded by the Spanish government (ENE2015-64117-C5-1-R (MINECO/FEDER), ENE2015-64117-C5-3-R (MINECO/FEDER), and ULLE10-4E-1305). GREA is certified agent TECNIO in the category of technology developers from the Government of Catalonia. The authors would like to thank the Catalan Government for the quality accreditation given to their research group (2014 SGR 123). This project has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under Grant agreement Nº PIRSES-GA-2013-610692 (INNOSTORAGE) and from European Union's Horizon 2020 research and innovation programme under grant agreement Nº 657466 (INPATH-TES). Alvaro de Gracia would like to thank Ministerio de Economia y Competitividad de España for Grant Juan de la Cierva, FJCI-2014-19940. Julià Coma would like to thank the Departament d'Universitats, Recerca i Societat de la Informació de la Generalitat de Catalunya for his research fellowship (2016FI_B2 00147). Aran Solé would like to thank Ministerio de Economía y Competitividad de España for Grant Juan de la Cierva, FJCI-2015-25741

    Measurements of the effect of boundary conditions on upstream and downstream noise arising from entropy spots

    Get PDF
    Pressure fluctuations in combustors arise either directly from the heat release rate perturbations of the flame (direct noise), or indirectly from the acceleration of entropy, vorticity or compositional perturbations through nozzles or turbine guide vanes (indirect noise). In this work, the generation of synthetic entropy spots via the Joule effect produces direct noise, and their acceleration through orifice plates and nozzles produces indirect noise. These acoustic waves reverberate, reflecting several times at the boundaries to add up to the measured pressure. Single travelling pulses are isolated by the introduction of a semiinfinite tube that acts as an anechoic termination for a limited time-window. It is shown how the shape of the converging nozzle does not affect the reflection of the direct noise wave, confirming the hypothesis of a compact nozzle. Further, it is demonstrated that the assumption of an isentropic nozzle does not hold, but that an alternative theory which takes into account the partial acoustic energy dissipation offers good agreement with the experiments. Finally, it is shown that the reflected indirect noise is underpredicted by isentropic theories. An extension of the present work is indicated for the measurement of the transmissivity of indirect noise.Francesca De Domenico is supported by the Honorary Vice-Chancellor’s Award and a Qualcomm/DTA Studentship (University of Cambridge). Erwan Rolland is supported by an EPSRC DTA studentship (University of Cambridge). Experiments were partly funded by EPSRC grant EP/K02924X/1

    Microfluidic cartridge with integrated array of amorphous silicon photosensors for chemiluminescence detection of viral DNA

    Get PDF
    Portable and simple analytical devices based on microfluidics with chemiluminescence detection are particularly attractive for point-of-care applications, offering high detectability and specificity in a simple and miniaturized analytical format. Particularly relevant for infectious disease diagnosis is the ability to sensitively and specifically detect target nucleic acid sequences in biological fluids. To reach the goal of real-life applications for such devices, however, several technological challenges related to full device integration are still to be solved, one key aspect regarding on-chip integration of the chemiluminescence signal detection device. Nowadays, the most promising approach is on-chip integration of thin-film photosensors. We recently proposed a portable cartridge with microwells aligned with an array of hydrogenated amorphous silicon (a-Si:H) photosensors, reaching attomole level limits of detection for different chemiluminescence model reactions. Herein, we explore its applicability and performance for multiplex and quantitative detection of viral DNA. In particular, the cartridge was modified to accommodate microfluidic channels and, upon immobilization of three oligonucleotide probes in different positions along each channel, each specific for a genotype of Parvovirus B19, viral nucleic acid sequences were captured and detected. With this system, taking advantage of oligoprobes specificity, chemiluminescence detectability, and photosensor sensitivity, accurate quantification of target analytes down to 70 pmol L-1 was obtained for each B19 DNA genotype, with high specificity and multiplexing ability. Results confirm the good detection capabilities and assay applicability of the proposed system, prompting the development of innovative portable analytical devices with enhanced sensitivity and multiplexed capabilities

    Hidden geometric correlations in real multiplex networks

    Full text link
    Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not random combinations of single network layers. Instead, they are organized in specific ways dictated by hidden geometric correlations between the individual layers. We find that these correlations are strong in different real multiplexes, and form a key framework for answering many important questions. Specifically, we show that these geometric correlations facilitate: (i) the definition and detection of multidimensional communities, which are sets of nodes that are simultaneously similar in multiple layers; (ii) accurate trans-layer link prediction, where connections in one layer can be predicted by observing the hidden geometric space of another layer; and (iii) efficient targeted navigation in the multilayer system using only local knowledge, which outperforms navigation in the single layers only if the geometric correlations are sufficiently strong. Our findings uncover fundamental organizing principles behind real multiplexes and can have important applications in diverse domains.Comment: Supplementary Materials available at http://www.nature.com/nphys/journal/v12/n11/extref/nphys3812-s1.pd

    Fano collective resonance as complex mode in a two dimensional planar metasurface of plasmonic nanoparticles

    Get PDF
    Fano resonances are features in transmissivity/reflectivity/absorption that owe their origin to the interaction between a bright resonance and a dark (i.e., sub-radiant) narrower resonance, and may emerge in the optical properties of planar two-dimensional (2D) periodic arrays (metasurfaces) of plasmonic nanoparticles. In this Letter, we provide a thorough assessment of their nature for the general case of normal and oblique plane wave incidence, highlighting when a Fano resonance is affected by the mutual coupling in an array and its capability to support free modal solutions. We analyze the representative case of a metasurface of plasmonic nanoshells at ultraviolet frequencies and compute its absorption under TE- and TM-polarized, oblique plane-wave incidence. In particular, we find that plasmonic metasurfaces display two distinct types of resonances observable as absorption peaks: one is related to the Mie, dipolar resonance of each nanoparticle; the other is due to the forced excitation of free modes with small attenuation constant, usually found at oblique incidence. The latter is thus an array-induced collective Fano resonance. This realization opens up to manifold flexible designs at optical frequencies mixing individual and collective resonances. We explain the physical origin of such Fano resonances using the modal analysis, which allows to calculate the free modes with complex wavenumber supported by the metasurface. We define equivalent array dipolar polarizabilities that are directly related to the absorption physics at oblique incidence and show a direct dependence between array modal phase and attenuation constant and Fano resonances. We thus provide a more complete picture of Fano resonances that may lead to the design of filters, energy-harvesting devices, photodetectors, and sensors at ultraviolet frequencies.Comment: 6 pages, 5 figure
    corecore