18 research outputs found

    Cuidados biomédicos de saúde em Angola e na Companhia de Diamantes de Angola, c. 1910-1970

    Get PDF
    Pretende-se caracterizar a prestação de cuidados biomédicos em Angola durante a atividade da Companhia de Diamantes de Angola. Uma análise comparativa de políticas e práticas de saúde pública de vários atores coloniais, como os serviços de saúde da Companhia, sua congénere do Estado e outras empresas coloniais, revelará diferenças de investimento na saúde, isto é, instalações e pessoal de saúde, e tratamentos. Este escrutínio bem como as condições de vida iluminarão o carácter idiossincrático e central dos serviços de saúde da Companhia em termos de morbimortalidade em Angola, e a centralidade destes para as representações de um império cuidador

    A new role for the Endothelin-1/Endothelin-A receptor signaling during early neural crest specification

    Get PDF
    The neural crest is induced at the border of the neural plate in a multistep process by signals emanated from the epidermis, neural plate and mesoderm. In this work we show for the first time the existence of a neural crest maintenance step which is dependent on signals released from the mesoderm. We identified Endothelin-1 (Edn1) and its receptor (Ednra) as key players of this signal and we show that Edn1/Ednra signaling is required for maintenance of the neural crest by a dual mechanism of cell specification and cell survival. We show that: (i) Ednra is expressed in prospective neural crest; (ii) loss-of-function experiments with antisense morpholino or with specific chemical inhibitor suppress the expression of early neural crest markers; (iii) gain-of-function experiments expand the neural crest territory; (iv) epistatic experiments show that Ednra/Edn1 is downstream of the early neural crest gene Msx1 and upstream of the late genes Sox9 and Sox10; and (v) Edn1/Ednra signaling inhibits apoptosis and controls cell specification of the neural crest. Together, our results provide insight on a new role of Edn1/Ednra cell signaling pathway during early neural crest development.Fil: Bonano, Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Tríbulo, Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: De Calisto, Jaime. University College London; Estados UnidosFil: Marchant, Lorena. University College London; Estados UnidosFil: Sanchez, Sara Serafina del V.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Mayor, Roberto. University College London; Estados UnidosFil: Aybar, Manuel Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentin

    β8 Integrin Expression and Activation of TGF-β by Intestinal Dendritic Cells Are Determined by Both Tissue Microenvironment and Cell Lineage

    No full text
    International audienceActivation of TGF-β by dendritic cells (DCs) expressing αvβ8 integrin is essential for the generation of intestinal regulatory T cells (Tregs) that in turn promote tolerance to intestinal Ags. We have recently shown that αvβ8 integrin is preferentially expressed by CD103(+) DCs and confers their ability to activate TGF-β and generate Tregs. However, how these DCs become specialized for this vital function is unknown. In this study, we show that β8 expression is controlled by a combination of factors that include DC lineage and signals derived from the tissue microenvironment and microbiota. Specifically, our data demonstrate that TGF-β itself, along with retinoic acid and TLR signaling, drives expression of αvβ8 in DCs. However, these signals only result in high levels of β8 expression in cells of the cDC1 lineage, CD8α(+), or CD103(+)CD11b(-) DCs, and this is associated with epigenetic changes in the Itgb8 locus. Together, these data provide a key illustrative example of how microenvironmental factors and cell lineage drive the generation of regulatory αvβ8-expressing DCs specialized for activation of TGF-β to facilitate Treg generation

    Intestinal epithelial cell-specific RARα depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system

    Get PDF
    Retinoic acid (RA), a dietary vitamin A metabolite, is crucial in maintaining intestinal homeostasis. RA acts on intestinal leukocytes to modulate their lineage commitment and function. Although the role of RA has been characterized in immune cells, whether intestinal epithelial cells (IECs) rely on RA signaling to exert their immune-regulatory function has not been examined. Here we demonstrate that lack of retinoic acid receptor alpha (RARα) signaling in IECs results in deregulated epithelial lineage specification, leading to increased numbers of goblet cells and Paneth cells. Mechanistically, lack or RARα resulted in increased KLF4+ goblet cell precursors in the distal bowel, whereas RA treatment inhibited klf4 expression and goblet cell differentiation in zebrafish. These changes in secretory cells are associated with increased reg3g, reduced luminal bacterial detection and an underdeveloped intestinal immune system, as evidenced by an almost complete absence of lymphoid follicles and gut resident mononuclear phagocytes. This underdeveloped intestinal immune system shows a decreased ability to clear infection with Citrobacter rodentium. Collectively, our findings indicate that epithelial cell-intrinsic RARα signaling is critical to the global development of the intestinal immune system
    corecore