32 research outputs found

    Production of green base chemicals through conventional and emerging pyrolysis processes

    Get PDF

    A trial-based cost-utility analysis of metastasis-directed therapy for oligorecurrent prostate cancer

    Get PDF
    The optimal management of patients with oligorecurrent prostate cancer (PCa) is unknown. There is growing interest in metastasis-directed therapy (MDT) for this population. The objective was to assess cost-utility from a Belgian healthcare payer's perspective of MDT and delayed androgen deprivation therapy (ADT) in comparison with surveillance and delayed ADT, and with immediate ADT. A Markov decision-analytic trial-based model was developed, projecting the results over a 5-year time horizon with one-month cycles. Clinical data were derived from the STOMP trial and literature. Treatment costs were derived from official government documents. Probabilistic sensitivity analyses showed that MDT is cost-effective compared to surveillance (ICER: Euro8393/quality adjusted life year (QALY)) and immediate ADT (dominant strategy). The ICER is most sensitive to utilities in the different health states and the first month MDT cost. At a willingness-to-pay threshold of Euro40,000 per QALY, the cost of the first month MDT should not exceed Euro8136 to be cost-effective compared to surveillance. The Markov-model suggests that MDT for oligorecurrent PCa is potentially cost-effective in comparison with surveillance and delayed ADT, and in comparison with immediate ADT

    Experimental and modeling study of the pyrolysis and combustion of 2-methyl-tetrahydrofuran

    Get PDF
    De Bruycker R, Tran L-S, Carstensen H-H, et al. Experimental and modeling study of the pyrolysis and combustion of 2-methyl-tetrahydrofuran. COMBUSTION AND FLAME. 2017;176:409-428.Saturated cyclic ethers are being proposed as next-generation bio-derived fuels. However, their pyrolysis and combustion chemistry has not been well established. In this work, the pyrolysis and combustion chemistry of 2-methyl-tetrahydrofuran (MTHF) was investigated through experiments and detailed kinetic modeling. Pyrolysis experiments were performed in a dedicated plug flow reactor at 170 kPa, temperatures between 900 and 1100 K and a N-2 (diluent) to MTHF molar ratio of 10. The combustion chemistry of MTHF was investigated by measuring mole fraction profiles of stable species in premixed flat flames at 6.7 kPa and equivalence ratios 0.7, 1.0 and 1.3 and by determining laminar burning velocities of MTHF/air flat flames with unburned gas temperatures of 298, 358 and 398 K and equivalence ratios between 0.6 and 1.6. Furthermore, a kinetic model for pyrolysis and combustion of MTHF was developed, which contains a detailed description of the reactions of MTHF and its derived radicals with the aid of new high-level theoretical calculations. Model calculated mole fraction profiles and laminar burning velocities are in relatively good agreement with the obtained experimental data. At the applied pyrolysis conditions, unimolecular decomposition of MTHF by scission of the methyl group and concerted ring opening to 4-penten-1-ol dominates over scission of the ring bonds; the latter reactions were significant in tetrahydrofuran pyrolysis. MTHF is mainly consumed by hydrogen abstraction reactions. Subsequent decomposition of the resulting radicals by beta-scission results in the observed product spectrum including small alkenes, formaldehyde, acetaldehyde and ketene. In the studied flames, unimolecular ring opening of MTHF is insignificant and consumption of MTHF through radical chemistry dominates. Recombination of 2-oxo-ethyl and 2-oxo-propyl, primary radicals in MTHF decomposition, with hydrogen atoms and carbon-centered radicals results in a wide range of oxygenated molecules. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved
    corecore