232 research outputs found

    Maged1, a new regulator of skeletal myogenic differentiation and muscle regeneration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In normal adult skeletal muscle, cell turnover is very slow. However, after an acute lesion or in chronic pathological conditions, such as primary myopathies, muscle stem cells, called satellite cells, are induced to proliferate, then withdraw definitively from the cell cycle and fuse to reconstitute functional myofibers.</p> <p>Results</p> <p>We show that Maged1 is expressed at very low levels in normal adult muscle but is strongly induced after injury, during the early phase of myoblast differentiation. By comparing in vitro differentiation of myoblasts derived from wild-type or Maged1 knockout mice, we observed that Maged1 deficiency results in reduced levels of p21<sup>CIP1/WAF1</sup>, defective cell cycle exit and impaired myotube maturation. In vivo, this defect results in delayed regeneration of injured muscle.</p> <p>Conclusions</p> <p>These data demonstrate for the first time that Maged1 is an important factor required for proper skeletal myoblast differentiation and muscle healing.</p

    Cerebral microcirculation is impaired during sepsis: an experimental study

    Get PDF
    INTRODUCTION: Pathophysiology of brain dysfunction due to sepsis remains poorly understood. Cerebral microcirculatory alterations may play a role; however, experimental data are scarce. This study sought to investigate whether the cerebral microcirculation is altered in a clinically relevant animal model of septic shock. METHODS: Fifteen anesthetized, invasively monitored, and mechanically ventilated female sheep were allocated to a sham procedure (n = 5) or sepsis (n = 10), in which peritonitis was induced by intra-abdominal injection of autologous faeces. Animals were observed until spontaneous death or for a maximum of 20 hours. In addition to global hemodynamic assessment, the microcirculation of the cerebral cortex was evaluated using Sidestream Dark-Field (SDF) videomicroscopy at baseline, 6 hours, 12 hours and at shock onset. At least five images of 20 seconds each from separate areas were recorded at each time point and stored under a random number to be analyzed, using a semi-quantitative method, by an investigator blinded to time and condition. RESULTS: All septic animals developed a hyperdynamic state associated with organ dysfunction and, ultimately, septic shock. In the septic animals, there was a progressive decrease in cerebral total perfused vessel density (from 5.9 ± 0.9 at baseline to 4.8 ± 0.7 n/mm at shock onset, P = 0.009), functional capillary density (from 2.8 ± 0.4 to 2.1 ± 0.7 n/mm, P = 0.049), the proportion of small perfused vessels (from 95 ± 3 to 85 ± 8%, P = 0.02), and the total number of perfused capillaries (from 22.7 ± 2.7 to 17.5 ± 5.2 n/mm, P = 0.04). There were no significant changes in microcirculatory flow index over time. In sham animals, the cerebral microcirculation was unaltered during the study period. CONCLUSIONS: In this model of peritonitis, the cerebral microcirculation was impaired during sepsis, with a significant reduction in perfused small vessels at the onset of septic shock. These alterations may play a role in the pathogenesis of septic encephalopathy

    The Effects of Temperature Management on Brain Microcirculation, Oxygenation and Metabolism

    Get PDF
    Purpose: Target temperature management (TTM) is often used in patients after cardiac arrest, but the effects of cooling on cerebral microcirculation, oxygenation and metabolism are poorly understood. We studied the time course of these variables in a healthy swine model.Methods: Fifteen invasively monitored, mechanically ventilated pigs were allocated to sham procedure (normothermia, NT; n = 5), cooling (hypothermia, HT, n = 5) or cooling with controlled oxygenation (HT-Oxy, n = 5). Cooling was induced by cold intravenous saline infusion, ice packs and nasal cooling to achieve a body temperature of 33-35 degrees C. After 6 h, animals were rewarmed to baseline temperature (within 5 h). The cerebral microvascular network was evaluated (at baseline and 2, 7 and 12 h thereafter) using sidestream dark-field (SDF) video-microscopy. Cerebral blood flow (laser Doppler MNP100XP, Oxyflow, Oxford Optronix, Oxford, UK), oxygenation (PbtO(2), Licox catheter, Integra Lifesciences, USA) and lactate/pyruvate ratio (LPR) using brain microdialysis (CMA, Stockholm, Sweden) were measured hourly. Results: In HT animals, cerebral functional capillary density (FCD) and proportion of small-perfused vessels (PSPV) significantly decreased over time during the cooling phase; concomitantly, PbtO(2) increased and LPR decreased. After rewarming, all microcirculatory variables returned to normal values, except LPR, which increased during the rewarming phase in the two groups subjected to HT when compared to the group maintained at normothermia. Conclusions: In healthy animals, TTM can be associated with alterations in cerebral microcirculation during cooling and altered metabolism at rewarming

    Plant sterols and cardiovascular disease: a systematic review and meta-analysis†

    Get PDF
    The impact of increased serum concentrations of plant sterols on cardiovascular risk is unclear. We conducted a systematic review and meta-analysis aimed to investigate whether there is an association between serum concentrations of two common plant sterols (sitosterol, campesterol) and cardiovascular disease (CVD). We systematically searched the databases MEDLINE, EMBASE, and COCHRANE for studies published between January 1950 and April 2010 that reported either risk ratios (RR) of CVD in relation to serum sterol concentrations (either absolute or expressed as ratios relative to total cholesterol) or serum sterol concentrations in CVD cases and controls separately. We conducted two meta-analyses, one based on RR of CVD contrasting the upper vs. the lower third of the sterol distribution, and another based on standardized mean differences between CVD cases and controls. Summary estimates were derived by fixed and random effects meta-analysis techniques. We identified 17 studies using different designs (four case–control, five nested case–control, three cohort, five cross-sectional) involving 11 182 participants. Eight studies reported RR of CVD and 15 studies reported serum concentrations in CVD cases and controls. Funnel plots showed evidence for publication bias indicating small unpublished studies with non-significant findings. Neither of our meta-analyses suggested any relationship between serum concentrations of sitosterol and campesterol (both absolute concentrations and ratios to cholesterol) and risk of CVD. Our systematic review and meta-analysis did not reveal any evidence of an association between serum concentrations of plant sterols and risk of CVD
    corecore