5,128 research outputs found
Low temperature structural effects in the (TMTSF)PF and AsF Bechgaard salts
We present a detailed low-temperature investigation of the statics and
dynamics of the anions and methyl groups in the organic conductors
(TMTSF)PF and (TMTSF)AsF (TMTSF :
tetramethyl-tetraselenafulvalene). The 4 K neutron scattering structure
refinement of the fully deuterated (TMTSF)PF-D12 salt allows locating
precisely the methyl groups at 4 K. This structure is compared to the one of
the fully hydrogenated (TMTSF)PF-H12 salt previously determined at the
same temperature. Surprisingly it is found that deuteration corresponds to the
application of a negative pressure of 5 x 10 MPa to the H12 salt. Accurate
measurements of the Bragg intensity show anomalous thermal variations at low
temperature both in the deuterated PF and AsF salts. Two different
thermal behaviors have been distinguished. Low-Bragg-angle measurements reflect
the presence of low-frequency modes at characteristic energies {\theta} =
8.3 K and {\theta} = 6.7 K for the PF-D12 and AsF-D12 salts,
respectively. These modes correspond to the low-temperature methyl group
motion. Large-Bragg-angle measurements evidence an unexpected structural change
around 55 K which probably corresponds to the linkage of the anions to the
methyl groups via the formation of F...D-CD2 bonds observed in the 4 K
structural refinement. Finally we show that the thermal expansion coefficient
of (TMTSF)PF is dominated by the librational motion of the PF
units. We quantitatively analyze the low-temperature variation of the lattice
expansion via the contribution of Einstein oscillators, which allows us to
determine for the first time the characteristic frequency of the PF6
librations: {\theta} = 50 K and {\theta} = 76 K for the PF-D12 and
PF-H12 salts, respectively
Envelope structure of deeply embedded young stellar objects in the Serpens Molecular Cloud
Aperture synthesis and single-dish (sub) millimeter molecular lines and
continuum observations reveal in great detail the envelope structure of deeply
embedded young stellar objects (SMM1, SMM2, SMM3, SMM4) in the densely
star-forming Serpens Molecular Cloud. Resolved millimeter continuum emission
constrains the density structure to a radial power law with index -2.0 +/- 0.5,
and envelope masses of 8.7, 3.0, and 5.3 M_sol for SMM1, SMM3, and SMM4. The
core SMM2 does not seem to have a central condensation and may not have formed
a star yet. The molecular line observations can be described by the same
envelope model, if an additional, small amount of warm (100 K) material is
included. This probably corresponds to the inner few hundred AU of the envelope
were the temperature is high. In the interferometer beam, the molecular lines
reveal the inner regions of the envelopes, as well as interaction of the
outflow with the surrounding envelope. Bright HCO+ and HCN emission outlines
the cavities, while SiO and SO trace the direct impact of the outflow on
ambient gas. Taken together, these observations provide a first comprehensive
view of the physical and chemical structure of the envelopes of deeply embedded
young stellar objects in a clustered environment on scales between 1000 and
10,000 AU.Comment: 46 pages, incl. 12 postscript figures, uses ApJ latex and psfig
macro
Semiclassical thermodynamics of scalar fields
We present a systematic semiclassical procedure to compute the partition
function for scalar field theories at finite temperature. The central objects
in our scheme are the solutions of the classical equations of motion in
imaginary time, with spatially independent boundary conditions. Field
fluctuations -- both field deviations around these classical solutions, and
fluctuations of the boundary value of the fields -- are resummed in a Gaussian
approximation. In our final expression for the partition function, this
resummation is reduced to solving certain ordinary differential equations.
Moreover, we show that it is renormalizable with the usual 1-loop counterterms.Comment: 24 pages, 5 postscript figure
G-structures and Domain Walls in Heterotic Theories
We consider heterotic string solutions based on a warped product of a
four-dimensional domain wall and a six-dimensional internal manifold,
preserving two supercharges. The constraints on the internal manifolds with
SU(3) structure are derived. They are found to be generalized half-flat
manifolds with a particular pattern of torsion classes and they include
half-flat manifolds and Strominger's complex non-Kahler manifolds as special
cases. We also verify that previous heterotic compactifications on half-flat
mirror manifolds are based on this class of solutions.Comment: 29 pages, reference added, typos correcte
Tracing the Mass during Low-Mass Star Formation. II. Modelling the Submillimeter Emission from Pre-Protostellar Cores
We have modeled the emission from dust in pre-protostellar cores, including a
self-consistent calculation of the temperature distribution for each input
density distribution. Model density distributions include Bonnor-Ebert spheres
and power laws. The Bonnor-Ebert spheres fit the data well for all three cores
we have modeled. The dust temperatures decline to very low values (\Td \sim 7
K) in the centers of these cores, strongly affecting the dust emission.
Compared to earlier models that assume constant dust temperatures, our models
indicate higher central densities and smaller regions of relatively constant
density. Indeed, for L1544, a power-law density distribution, similar to that
of a singular, isothermal sphere, cannot be ruled out. For the three sources
modeled herein, there seems to be a sequence of increasing central
condensation, from L1512 to L1689B to L1544. The two denser cores, L1689B and
L1544, have spectroscopic evidence for contraction, suggesting an evolutionary
sequence for pre-protostellar cores.Comment: 22 pages, 9 figures, Ap. J. accepted, uses emulateapj5.st
Tailoring limb length based on total small bowel length in one anastomosis gastric bypass surgery (TAILOR study):study protocol for a randomized controlled trial
Background: The one anastomosis gastric bypass (OAGB) is being performed by an increasing number of bariatric centers over the world. However, the optimal length of the biliopancreatic (BP) limb remains a topic of discussion. Retrospective studies suggest the benefit of tailoring BP-limb length; however, randomized trials are lacking. The aim of this study is to investigate whether tailoring the length of the BP-limb based on total small bowel length (TSBL) leads to better results in terms of weight loss, vitamin deficiencies, and bowel movements compared to a fixed BP-limb length. Methods: The TAILOR study is a double-blind single-center randomized controlled trial. Patients scheduled for primary OAGB surgery will be randomly allocated either to a standard BP-limb of 150 cm or to a BP-limb length based on their TSBL: TSBL 700 cm, BP-limb 210 cm. The primary outcome is to compare the percent total weight loss (%TWL) at 5 years between the two groups. Secondary outcomes include nutritional deficiencies, remission of comorbidities, symptoms of dumping, quality of life, and daily bowel movements. The study includes a total of 212 patients and is designed to detect a 5% difference in the primary endpoint. Discussion: The TAILOR study will provide new insights into the effect of different BP-limb lengths and the role of the TSBL in the OAGB. The study is designed to provide guidance for bariatric surgeons to determine the optimal BP-limb length in the OAGB
NIKA2: a mm camera for cluster cosmology
Galaxy clusters constitute a major cosmological probe. However, Planck 2015
results have shown a weak tension between CMB-derived and cluster-derived
cosmological parameters. This tension might be due to poor knowledge of the
cluster mass and observable relationship.
As for now, arcmin resolution Sunyaev-Zeldovich (SZ) observations ({\it e.g.}
SPT, ACT and Planck) only allowed detailed studies of the intra cluster medium
for low redshift clusters () high
resolution and high sensitivity SZ observations are needed. With both a wide
field of view (6.5 arcmin) and a high angular resolution (17.7 and 11.2 arcsec
at 150 and 260 GHz), the NIKA2 camera installed at the IRAM 30-m telescope
(Pico Veleta, Spain) is particularly well adapted for these observations. The
NIKA2 SZ observation program will map a large sample of clusters (50) at
redshifts between 0.5 and 0.9. As a pilot study for NIKA2, several clusters of
galaxies have been observed with the pathfinder, NIKA, at the IRAM 30-m
telescope to cover the various configurations and observation conditions
expected for NIKA2.
Spin states of zigzag-edged Mobius graphene nanoribbons from first principles
Mobius graphene nanoribbons have only one edge topologically. How the
magnetic structures, previously associated with the two edges of zigzag-edged
flat nanoribbons or cyclic nanorings, would change for their Mobius
counterparts is an intriguing question. Using spin-polarized density functional
theory, we shed light on this question. We examine spin states of zigzag-edged
Mobius graphene nanoribbons (ZMGNRs) with different widths and lengths. We find
a triplet ground state for a Mobius cyclacene, while the corresponding
two-edged cyclacene has an open-shell singlet ground state. For wider ZMGNRs,
the total magnetization of the ground state is found to increase with the
ribbon length. For example, a quintet ground state is found for a ZMGNR. Local
magnetic moments on the edge carbon atoms form domains of majority and minor
spins along the edge. Spins at the domain boundaries are found to be
frustrated. Our findings show that the Mobius topology (i.e., only one edge)
causes ZMGNRs to favor one spin over the other, leading to a ground state with
non-zero total magnetization.Comment: 17 pages, 4 figure
Delay and Impairment in Brain Development and Function in Rat Offspring After Maternal Exposure to Methylmercury
Maternal exposure to the neurotoxin methylmercury (MeHg) has been shown to have adverse effects on neural development of the offspring in man. Little is known about the underlying mechanisms by which MeHg affects the developing brain. To explore the neurodevelopmental defects and the underlying mechanism associated with MeHg exposure, the cerebellum and cerebrum of Wistar rat pups were analyzed by [F-18]FDG PET functional imaging, field potential analysis, and microarray gene expression profiling. Female rat pups were exposed to MeHg via maternal diet during intrauterinal and lactational period (from gestational day 6 to postnatal day (PND)10), and their brain tissues were sampled for the analysis at weaning (PND18-21) and adulthood (PND61-70). The [F-18]FDG PET imaging and field potential analysis suggested a delay in brain activity and impaired neural function by MeHg. Genome-wide transcriptome analysis substantiated these findings by showing (1) a delay in the onset of gene expression related to neural development, and (2) alterations in pathways related to both structural and functional aspects of nervous system development. The latter included changes in gene expression of developmental regulators, developmental phase associated genes, small GTPase signaling molecules, and representatives of all processes required for synaptic transmission. These findings were observed at dose levels at which only marginal changes in conventional developmental toxicity endpoints were detected. Therefore, the approaches applied in this study are promising in terms of yielding increased sensitivity compared with classical developmental toxicity tests
Single-inclusive production of large-pT charged particles in hadronic collisions at TeV energies and perturbative QCD predictions
The single inclusive spectrum of charged particles with transverse momenta
pT=3-150 GeV/c measured at midrapidity by the CDF experiment in
proton-antiproton (p-pbar) collisions at sqrt(s)=1.96 TeV is compared to
next-to-leading order (NLO) perturbative QCD calculations using the most recent
parametrizations of the parton distributions and parton-to-hadron fragmentation
functions. Above pT~20 GeV/c, there is a very sizeable disagreement of the
Tevatron data compared to the NLO predictions and to xT-scaling expectations,
suggesting a problem in the experimental data. We also present the predictions
for the pT-differential charged hadron spectra and the associated theoretical
uncertainties for proton-proton (p-p) collisions at LHC energies
(sqrt(s)=0.9-14 TeV). Two procedures to estimate the charged hadron spectra at
LHC heavy-ion collision energies (sqrt(s)=2.76,5.5 TeV) from p-p measurements
are suggested.Comment: 23 pages, 9 figures. A few text additions. Accepted for publication
in JHE
- …