We have modeled the emission from dust in pre-protostellar cores, including a
self-consistent calculation of the temperature distribution for each input
density distribution. Model density distributions include Bonnor-Ebert spheres
and power laws. The Bonnor-Ebert spheres fit the data well for all three cores
we have modeled. The dust temperatures decline to very low values (\Td \sim 7
K) in the centers of these cores, strongly affecting the dust emission.
Compared to earlier models that assume constant dust temperatures, our models
indicate higher central densities and smaller regions of relatively constant
density. Indeed, for L1544, a power-law density distribution, similar to that
of a singular, isothermal sphere, cannot be ruled out. For the three sources
modeled herein, there seems to be a sequence of increasing central
condensation, from L1512 to L1689B to L1544. The two denser cores, L1689B and
L1544, have spectroscopic evidence for contraction, suggesting an evolutionary
sequence for pre-protostellar cores.Comment: 22 pages, 9 figures, Ap. J. accepted, uses emulateapj5.st