27 research outputs found

    Amélioration des références techniques pour les rotations à base de Cucurbitacées et Solanacées en culture Biologique sous abris (projet OptiAbriBio)

    Get PDF
    En maraßchage biologique sous abri, les cultures de solanacées et cucurbitacées occupent un place prédominante car il s'agit de productions essentielles et incoutournables, en circuit court comme en circuit long. Cette situation induit cependant des difficultés dans la mise en oeuvre de rotations et assolements diversifiés, pratique fondamentale en agriculture biologique. Les rotations courtes et intensives sous abri, et le retour fréquent des solanacées et cucurbitacées, peuvent engendrer de réelles difficultés sanitaires car elles peuvent favoriser le développement de ravageurs et maladies telluriques ou aériens. Il est donc essentiel de choisir les espÚces et variétés les plus adaptés à ce contexte, qui permettront d'assurer les meilleurs résultats agronomiques grùce à leur rusticité et/ou leur potentiel de résistance aux pathogÚnes, tout en respectant les exigences spécifiques de la filiÚre AB : semences biologiques privilégiées, diversité variétale (variétés populations et hybrides F1), qualités commerciale et organoleptique, ... Les objectifs du projet sont de : - Proposer des solutions techniques pour améliorer la résilience et la durabilité des systÚmes maraßchers sous abris vis à vis des problÚmes sanitaires, - Evaluer et caractériser le matériel végétal disponible en Agriculture Biologique pour les cultures de solanacées et cucurbitacées sous abri, afin de permettre aux producteurs de disposer d'un matériel végétal adapté et performant dans ces conditions de cultures spécifiques, pour une valorisation en circuit court et en circuit long

    The evolutionary origin of bilaterian smooth and striated myocytes

    Get PDF
    The dichotomy between smooth and striated myocytes is fundamental for bilaterian musculature, but its evolutionary origin is unsolved. In particular, interrelationships of visceral smooth muscles remain unclear. Absent in fly and nematode, they have not yet been characterized molecularly outside vertebrates. Here, we characterize expression profile, ultrastructure, contractility and innervation of the musculature in the marine annelid Platynereis dumerilii and identify smooth muscles around the midgut, hindgut and heart that resemble their vertebrate counterparts in molecular fingerprint, contraction speed and nervous control. Our data suggest that both visceral smooth and somatic striated myocytes were present in the protostome-deuterostome ancestor and that smooth myocytes later co-opted the striated contractile module repeatedly for example, in vertebrate heart evolution. During these smooth-to-striated myocyte conversions, the core regulatory complex of transcription factors conveying myocyte identity remained unchanged, reflecting a general principle in cell type evolutio

    Diversification des cultures en maraßchage biologique : quelles espÚces et variétés pour répondre aux spécificités de l'AB et aux besoins du marché bio (Divermarbio)

    No full text
    OBJECTIFS Ce projet vise à fournir des références techniques pour les maraßchers biologiques diversifiés, notamment sur le comportement agronomique de variétés de différentes espÚces potagÚres de diversification dans des conditions de jour court (pour des productions d'automne à printemps) en systÚmes légumiers/maraßchers biologiques. En particulier, il a pour objectif d'identifier des variétés rustiques (résistance au froid, aux pathogÚnes/ravageurs, adaptation aux jours courts), adaptées aux conditions de cultures biologiques (sans chauffage pour les cultures sous abri, intrants réduits, ...) pour des espÚces de légumes permettant de disposer d'une gamme adaptée aux besoins des marchés de circuit court et circuit long suffisante et offrant une bonne valorisation économique en période de faible production aux maraichers biologiques (fin d'automne à début de printemps en fonction des régions concernées). RESULTATS ATTENDUS Les stations impliquées réaliseront les essais variétaux et l'analyse des résultats au niveau local/régional. L'ITAB réalisera une analyse des essais mutli-locaux et leur synthÚse, annuellement et en fin de programme. A l'issue de ce projet, les résultats obtenus par l'ITAB et les stations impliquées permettront : - aux maraßchers de faire un choix variétal objectif, sur la base des données obtenues sur plusieurs sites d'essais et plusieurs années, - l'augmentation de l'utilisation de semences biologiques (pour les variétés retenues dans les essais), et dont la réduction des demandes de dérogations pour les semences potagÚres. Ils faciliteront également les évolutions réglementaires décidées par la commission semences du CNAB-INAO concernant le maintien ou non du régime dérogatoire sur les espÚces concernées par les essais. Différents livrables identifiés ont été précédemment présentés : fiches de préconisation variétale régionale, mise à jour de fiches techniques du guide "Produire des Légumes biologiques" pour les espÚces concernées par le projet. Ces livrables permettront de valoriser les résultats des travaux du projet

    Essential requirement for zebrafish anosmin-1a in the migration of the posterior lateral line primordium.

    Get PDF
    International audienceKallmann syndrome (KS) is a human genetic disease that impairs both cell migration and axon elongation. The KAL-1 gene underlying the X-linked form of KS, encodes an extracellular matrix protein, anosmin-1, which mediates cell adhesion and axon growth and guidance in vitro. We investigated the requirement for kal1a and kal1b, the two orthologues of the KAL-1 gene in zebrafish, in the journey of the posterior lateral line primordium (PLLP). First, we established that while the accumulation of kal1a and kal1b transcripts was restricted to the posterior region of the migrating primordium and newly deposited neuromasts, the encoded proteins, anosmin-1a and anosmin-1b, respectively, were accumulated in the PLLP, in differentiated neuromasts and in a thin strip extending along the trail path of the PLLP. We also show that morpholino knockdown of kal1a, but not kal1b, severely impairs PLLP migration. However, while the PLLP of kal1a morphants displays highly abnormal morphology, proper expression of the cxcr4b gene suggests that kal1a does not play a role in PLLP differentiation. Conversely, wild-type levels of kal1a transcripts are detected in the PLLP of cxcr4b or sdf1a morphant embryos, strongly suggesting that kal1a transcription is independent of CXCR4b/SDF1a signalling. Last, moderate depletion of both anosmin-1a and SDF1a markedly affects PLLP migration providing strong evidence that anosmin-1a acts as an essential co-factor in SDF1a-mediated signalling pathways. Our findings, which demonstrate, for the first time, an essential requirement for anosmin-1a in PLLP migration, also strongly suggest that this protein plays a key role for proper activation of the CXCR4b/SDF1a and/or CXCR7/SDF1a signalling pathway in PLLP migration

    Evidence for Involvement of Wnt Signalling in Body Polarities, Cell Proliferation, and the Neuro-Sensory System in an Adult Ctenophore

    Get PDF
    International audienceSignalling through the Wnt family of secreted proteins originated in a common metazoan ancestor and greatly influenced the evolution of animal body plans. In bilaterians, Wnt signalling plays multiple fundamental roles during embryonic development and in adult tissues, notably in axial patterning, neural development and stem cell regulation. Studies in various cnidarian species have particularly highlighted the evolutionarily conserved role of the Wnt/b-catenin pathway in specification and patterning of the primary embryonic axis. However in another key non-bilaterian phylum, Ctenophora, Wnts are not involved in early establishment of the body axis during embryogenesis. We analysed the expression in the adult of the ctenophore Pleurobrachia pileus of 11 orthologues of Wnt signalling genes including all ctenophore Wnt ligands and Fz receptors and several members of the intracellular b-catenin pathway machinery. All genes are strongly expressed around the mouth margin at the oral pole, evoking the Wnt oral centre of cnidarians. This observation is consistent with primary axis polarisation by the Wnts being a universal metazoan feature, secondarily lost in ctenophores during early development but retained in the adult. In addition, local expression of Wnt signalling genes was seen in various anatomical structures of the body including in the locomotory comb rows, where their complex deployment suggests control by the Wnts of local comb polarity. Other important contexts of Wnt involvement which probably evolved before the ctenophore/ cnidarian/bilaterian split include proliferating stem cells and progenitors irrespective of cell types, and developing as well as differentiated neuro-sensory structures

    Oral rings of gene expression (details) and evidence for intense cell proliferation around the mouth.

    No full text
    <p>The four genes encoding Wnt ligands have graded extensions of their expression domains starting from the mouth margin, with <i>PpiWnt9</i> (A) expression restricted to a very thin band, whereas <i>PpiWntX</i> (B) and <i>PpiWntA</i> (C) are expressed in a distinctly wider belt around the mouth, and <i>PpiWnt6</i> transcripts are detected in an even broader domain (D). Details of expression at the oral pole are also shown for two other genes, <i>PpiFzB</i> (E), <i>PpiTcf</i> (F), and for the stem cell marker gene <i>PpiPiwi1</i> (G). Most of these genes are also expressed in the two paragastric canals (white stars in A–D, G, J), elements of the gastro-vascular system that run parallel to the pharynx, from the stomach to the mouth area. The mouth border is a region of intense cell proliferation, as evidenced by EdU DNA label incorporation after a 2 h pulse (H) (I: higher magnification of the area boxed in H) and by immunolabelling of mitotic chromosomes using an anti-phospho-Histone H3 antibody (J). The arrowhead points to the mouth margin (mo) in all pictures. Scale bars: (A–H, J) 100 ”m; (I) 10 ”m.</p

    Gene expression in the tentacle root.

    No full text
    <p>(A) Schematic representation of the <i>P. pileus</i> tentacle root in internal view, notably showing the three characteristic longitudinal ridges containing the stem cells of colloblasts (lateral ridges, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0084363#pone.0084363-Ali1" target="_blank">[32]</a>) and of muscle cells (median ridge, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0084363#pone.0084363-Dayraud1" target="_blank">[34]</a>). (B) Whole-mount <i>in situ</i> hybridisation in dissected tentacle roots for four Wnt signalling genes. Orientation as in (A). (C) Schematic view of the tentacle root in transverse section (at about midlenght). The arrows indicate the direction of cell movement and differentiation along the colloblast (lateral light blue arrows) and muscle (median light pink arrow) cellular lineages. Colour code: blue: ectodermal epithelium; green: endodermal epithelium; red: mesogleal component of the tentacle root (muscle and nervous system); purple: body mesoglea; black: lumen of the tentacle sheat; black with white dots: lumen of the tentacular gastro-vascular canals. EXT: external side (i.e. towards body periphery); INT: internal side (i.e. towards pharynx). (D) Gene expression in transverse cryosections of the tentacle root. Orientation as in (C). Scale bars: 100 ”m.</p

    Gene expression in the aboral neuro-sensory complex and architecture of the polar field nervous system.

    No full text
    <p>(A) Summary of the morphology of the aboral neuro-sensory complex (polar field represented only on one side). Abbreviations: b: balancers; cg: ciliated groove; co: connection between Z-bodies; cz: central zone; ep: epithelial papilla; lb: lamellate bodies; mz: marginal zone; pfm: polar field muscle; Zb: Z-body. General distribution of transcripts within the aboral neuro-sensory complex is shown for <i>PpiDvl1</i> in (B), where the white dotted line delineates the apical organ and the black dotted line represents the polar field outline. The two distinct zones making up the polar field are labelled as mz (marginal zone) and cz (central zone). Detailed views of <i>in situ</i> hybridisation in the central area of the aboral neuro-sensory complex are given for <i>PpiWnt6</i> (C) and <i>PpiWntX</i> (D). Both genes are strongly expressed in the proximal extremities of the polar field marginal zones (asterisks). In addition, within the apical organ, <i>PpiWnt6</i> (C) is expressed in the balancers (b), in the epithelial floor (flo), and in the lithocytes (not visible because not on focus), and <i>PpiWntX</i> is expressed in two peripheral transverse spots in the tentacular plane (arrowheads in D). In the polar fields outside from their most proximal area, examples are shown in (E–G) (corresponding to the boxed area in B) for each of the three observed categories of gene expression patterns: a continuous band along the inner border of the marginal zone (E); same territory but with additional weaker expression in the rest of the marginal zone (F); or discontinuous spots along the inner border of the marginal zone, this situation being observed only for <i>PpiÎČ-cat</i> (G). These spots correspond to the anti-tyrosylated-α-tubulin immunoreactive Z-bodies (white arrowheads in H), as shown by comparison of the distribution of cell nuclei in Dapi counter-staining of <i>PpiÎČ-cat in situ</i> hybridisation (G’) and of anti-tyrosylated-α-tubulin immunostaining (H). The distribution of anti-serotonin (5-HT) immunoreactive neurons in the polar field is shown in (I) and (K), the latter corresponding to a detailed view of the area boxed in (I) with additional anti-tyrosylated-α-tubulin staining. The inner region of the polar field marginal zone furthermore contain a continuous row of catecholaminergic elongated cells, strongly immunoreactive with antibodies directed against norepinephrin (NE) (J, L, M), L-Dopa (N), tyrosine hydroxylase (TH) (O), and Vmat2 (P) (L–P: higher magnification views of area boxed in J). The white arrowhead in (K) and (L) points to a Z-body. The neuro-sensory architecture of the polar field is summarised in (Q). Scale bars: (B) 50 ”m; (C–J) 20 ”m; (K–P) 10 ”m.</p
    corecore