21 research outputs found

    AAV-mediated rescue of Eps8 expression in vivo restores hair-cell function in a mouse model of recessive deafness

    Get PDF
    The transduction of acoustic information by hair cells depends upon mechanosensitive stereociliary bundles that project from their apical surface. Mutations or absence of the stereociliary protein EPS8 cause deafness in humans and mice, respectively. Eps8 knockout mice (Eps8−/−) have hair cells with immature stereocilia and fail to become sensory receptors. Here, we show that exogenous delivery of Eps8 using Anc80L65 in P1–P2 Eps8−/− mice in vivo rescued the hair bundle structure of apical-coil hair cells. Rescued hair bundles correctly localize EPS8, WHIRLIN, MYO15, and BAIAP2L2, and generate normal mechanoelectrical transducer currents. Inner hair cells with normal-looking stereocilia re-expressed adult-like basolateral ion channels (BK and KCNQ4) and have normal exocytosis. The number of hair cells undergoing full recovery was not sufficient to rescue hearing in Eps8−/− mice. Adeno-associated virus (AAV)-transduction of P3 apical-coil and P1–P2 basal-coil hair cells does not rescue hair cells, nor does Anc80L65-Eps8 delivery in adult Eps8−/− mice. We propose that AAV-induced gene-base therapy is an efficient strategy to recover the complex hair-cell defects in Eps8−/− mice. However, this therapeutic approach may need to be performed in utero since, at postnatal ages, Eps8−/− hair cells appear to have matured or accumulated damage beyond the point of repair

    The distribution of inverted repeat sequences in the Saccharomyces cerevisiae genome

    Get PDF
    Although a variety of possible functions have been proposed for inverted repeat sequences (IRs), it is not known which of them might occur in vivo. We investigate this question by assessing the distributions and properties of IRs in the Saccharomyces cerevisiae (SC) genome. Using the IRFinder algorithm we detect 100,514 IRs having copy length greater than 6 bp and spacer length less than 77 bp. To assess statistical significance we also determine the IR distributions in two types of randomization of the S. cerevisiae genome. We find that the S. cerevisiae genome is significantly enriched in IRs relative to random. The S. cerevisiae IRs are significantly longer and contain fewer imperfections than those from the randomized genomes, suggesting that processes to lengthen and/or correct errors in IRs may be operative in vivo. The S. cerevisiae IRs are highly clustered in intergenic regions, while their occurrence in coding sequences is consistent with random. Clustering is stronger in the 3′ flanks of genes than in their 5′ flanks. However, the S. cerevisiae genome is not enriched in those IRs that would extrude cruciforms, suggesting that this is not a common event. Various explanations for these results are considered

    DNA word analysis based on the distribution of the distances between symmetric words

    Get PDF
    We address the problem of discovering pairs of symmetric genomic words (i.e., words and the corresponding reversed complements) occurring at distances that are overrepresented. For this purpose, we developed new procedures to identify symmetric word pairs with uncommon empirical distance distribution and with clusters of overrepresented short distances. We speculate that patterns of overrepresentation of short distances between symmetric word pairs may allow the occurrence of non-standard DNA conformations, such as hairpin/cruciform structures. We focused on the human genome, and analysed both the complete genome as well as a version with known repetitive sequences masked out. We reported several well-defined features in the distributions of distances, which can be classified into three different profiles, showing enrichment in distinct distance ranges. We analysed in greater detail certain pairs of symmetric words of length seven, found by our procedure, characterised by the surprising fact that they occur at single distances more frequently than expecte

    Negative Supercoiling Creates Single-Stranded Patches of DNA That Are Substrates for AID–Mediated Mutagenesis

    Get PDF
    Antibody diversification necessitates targeted mutation of regions within the immunoglobulin locus by activation-induced cytidine deaminase (AID). While AID is known to act on single-stranded DNA (ssDNA), the source, structure, and distribution of these substrates in vivo remain unclear. Using the technique of in situ bisulfite treatment, we characterized these substrates—which we found to be unique to actively transcribed genes—as short ssDNA regions, that are equally distributed on both DNA strands. We found that the frequencies of these ssDNA patches act as accurate predictors of AID activity at reporter genes in hypermutating and class switching B cells as well as in Escherichia coli. Importantly, these ssDNA patches rely on transcription, and we report that transcription-induced negative supercoiling enhances both ssDNA tract formation and AID mutagenesis. In addition, RNaseH1 expression does not impact the formation of these ssDNA tracts indicating that these structures are distinct from R-loops. These data emphasize the notion that these transcription-generated ssDNA tracts are one of many in vivo substrates for AID

    Transgenesis by lentiviral vectors: Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos

    No full text
    The introduction of foreign genes into early mouse embryos and embryonic stem (ES) cells is invaluable for the analysis of gene function and regulation in the living animal. The use of vectors derived from retroviruses as gene transfer vehicles in this setting has had limited success because of silencing of transgene expression. Here, we show that vectors derived from lentiviruses, which are complex retroviruses, can efficiently deliver genes to murine ES cells and that transgene expression is stable during proliferation of undifferentiated ES cells. The transgene is expressed during differentiation of ES cells in vitro (embryoid bodies) and in vivo (teratomas). Transfer of lentivector-transduced ES cells into blastocysts resulted in chimeric animals that expressed the transgene in multiple tissues. Embryos derived from crossings of chimeric mice expressed the transgene, indicating successful germ-line transmission. Infection of murine preimplantation embryos at morula stage with lentiviral vectors resulted in stable transduction and expression of the transgene in mouse embryos and in newborn mice. Finally, human ES cells were transduced by lentiviral vectors and expressed the transgene over several passages. Thus, lentiviral vectors represent a significant improvement over oncoretroviral vectors used previously for gene transfer into murine ES cells and preimplantation embryos. Ability to transfer foreign genes into human ES cells has potential relevance for the development of gene and cell-based therapies
    corecore