119 research outputs found

    SPECT/CT-plethysmography – non-invasive quantitation of bone and soft tissue blood flow

    Get PDF
    Preserved blood flow to bone and soft tissue is essential for their normal function. To date only numerous methods are suitable for direct bone blood flow (BBF) measurement. Here, we introduce a novel quantitative method for bone and soft tissue blood flow (BBF and SBF, respectively) measurement. It involves a combination of SPECT/CT imaging for blood pool localization in a specific region of interest ("soft" and "hard" tissues composing a limb) with veno-occlusive plethysmography. Using it, we measured BBF and SBF in the four limbs of 10 healthy subjects. At steady state blood flow measurements in the four limbs were similar, ranging between 5.5 – 6.5 and 1.87–2.48 ml per 100 ml of tissue per minute for BBF and SBF, respectively. Our results are comparable to those in the literature. We concluded that SPECT/CT-plethysmography appears to be a readily available and easy to use method to measure BBF and SBF, and can be added to the armamentarium of methods for BBF measurements

    Cardiovascular Autonomic Profile in Women With Premenstrual Syndrome

    Get PDF
    Introduction: The premenstrual syndrome (PMS) is a constellation of somatic and psychogenic symptoms that appear during late luteal (LL) phase of the menstrual cycle. Since many symptoms could be related to the autonomic nervous system, we hypothesized that the sympathetic nervous system is perturbed in PMS.Methods: The cardiovascular autonomic profile of nine women with PMS (30.4 ± 2.5 years) were compared to that of nine healthy controls (30 ± 2.5 years) during their early follicular (EF) and LL phases of the menstrual cycle. Plasma norepinephrine (NE) concentrations, power spectral analysis of heart rate and systolic blood pressure (BP), and baroreflex sensitivity (BRS) were assessed during recumbency and a head-up tilt (HUT). Cardiovascular responsiveness to α1- and β-adrenoreceptor agonists (phenylephrine and isoproterenol, respectively) were also assessed.Results: In the LL phase, the plasma NE concentrations in women with PMS during recumbency and a HUT were lower than those in women without PMS [180 ± 30 vs. 320 ± 50 pg/ml; p = 0.04 (recumbent), and 480 ± 70 vs. 940 ± 180 pg/ml: p = 0.02 (HUT)]. In the LL phase, the dose of phenylephrine required to increase systolic BP by 15 mmHg in women with PMS was significantly greater than that in women without PMS (202 ± 30 μg vs. 138 ± 20 μg; p = 0.02). Sympathetic and vagal cardiac control indices were comparable in the two groups in the menstrual phases. In women with PMS, the value of LFSBP in the LL phase was lower than that in the EF phase (0.98 ± 0.2 vs. 1.77 ± 0.4 mmHg2, p = 0.04). The increase in LFSBP in women with PMS in the LL phase during HUT was greater than that in the controls, 5.2 ± 0.9 vs. 3.1 ± 0.5 mmHg2, p = 0.045, and this increase was associated with a significant decrease in BRS.Conclusion: In women with PMS without psychogenic symptoms, the sympathetic control of their circulation is not dominant during the LL phase of their menstrual cycle

    Position Effects of Menu Item Displays in Consumer Choices: Comparisons of Horizontal Versus Vertical Displays

    Get PDF
    Consumers typically make choices based on a menu that lists a variety of food items. Prior research has shown that the position of food items within a menu (center vs. edge) can impact choices (e.g., edge preference and edge aversion). This research extends the literature by demonstrating that the display format of a menu (horizontal vs. vertical displays) can determine the relative impact of these influences. Two experiments find that the middle options are preferred when food options are displayed horizontally (vs. vertically), whereas the edge items are preferred under a vertical display (vs. a horizontal display). These differences extend to different types of foods (food vs. beverage), and to even and odd numbers of options (e.g., four vs. five). These findings increase the understanding of how food item displays can influence consumer choices, and provide important implications for practitioners and policymakers, including how to effectively position food items

    Drosophila orthologue of WWOX, the chromosomal fragile site FRA16D tumour suppressor gene, functions in aerobic metabolism and regulates reactive oxygen species

    Get PDF
    Common chromosomal fragile sites FRA3B and FRA16D are frequent sites of DNA instability in cancer, but their contribution to cancer cell biology is not yet understood. Genes that span these sites (FHIT and WWOX, respectively) are often perturbed (either increased or decreased) in cancer cells and both are able to suppress tumour growth. While WWOX has some tumour suppressor characteristics, its normal role and functional contribution to cancer has not been fully determined. We find that a significant proportion of Drosophila Wwox interactors identified by proteomics and microarray analyses have roles in aerobic metabolism. Functional relationships between Wwox and either CG6439/isocitrate dehydrogenase (Idh) or Cu–Zn superoxide dismutase (Sod) were confirmed by genetic interactions. In addition, altered levels of Wwox resulted in altered levels of endogenous reactive oxygen species. Wwox (like FHIT) contributes to pathways involving aerobic metabolism and oxidative stress, providing an explanation for the ‘non-classical tumour suppressor’ behaviour of WWOX. Fragile sites, and the genes that span them, are therefore part of a protective response mechanism to oxidative stress and likely contributors to the differences seen in aerobic glycolysis (Warburg effect) in cancer cells

    Inducible Gene Manipulations in Brain Serotonergic Neurons of Transgenic Rats

    Get PDF
    The serotonergic (5-HT) system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP), in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system
    corecore