53 research outputs found

    Isotopic fractionation during soil uptake of atmospheric hydrogen

    Get PDF
    Soil uptake of atmospheric hydrogen (H<sub>2</sub>) and the associated hydrogen isotope effect were studied using soil chambers in a Western Washington second-growth coniferous forest. Chamber studies were conducted during both winter and summer seasons to account for large natural variability in soil moisture content (4–50%) and temperature (6–22 °C). H<sub>2</sub> deposition velocities were found to range from 0.01–0.06 cm s<sup>−1</sup> with an average of 0.033 ± 0.008 cm s<sup>−1</sup> (95% confidence interval). Consistent with prior studies, deposition velocities were correlated with soil moisture below 20% soil moisture content during the summer season. During winter, there was considerable variability observed in deposition velocity that was not closely related to soil moisture. The hydrogen kinetic isotope effect with H<sub>2</sub> uptake was found to range from −24‰ to −109‰. Aggregate analysis of experimental data results in an average KIE of −57 ± 5‰ (95% CI). Some of the variability in KIE can be explained by larger isotope effects at lower (<10%) and higher (>30%) soil moisture contents. The measured KIE was also found to be correlated with deposition velocity, with smaller isotope effects occurring at higher deposition velocities. If correct, these findings will have an impact on the interpretation of atmospheric measurements and modeling of δD of H<sub>2</sub>

    HDQLIFE and neuro‐QoL physical function measures: Responsiveness in persons with huntington’s disease

    Full text link
    BackgroundHuntington’s disease (HD) is a neurological disorder that causes severe motor symptoms that adversely impact health‐related quality of life. Patient‐reported physical function outcome measures in HD have shown cross‐sectional evidence of validity, but responsiveness has not yet been assessed.ObjectivesThis study evaluates the responsiveness of the Huntington Disease Health‐Related Quality of Life (HDQLIFE) and the Quality of Life in Neurological Disorders (Neuro‐QoL) physical function measures in persons with HD.MethodsA total of 347 participants completed baseline and at least 1 follow‐up (12‐month and 24‐month) measure (HDQLIFE Chorea, HDQLIFE Swallowing Difficulties, HDQLIFE Speech Difficulties, Neuro‐QoL Upper Extremity Function, and/or Neuro‐QoL Lower Extremity Function). Of the participants that completed the baseline assessment, 338 (90.9%) completed the 12‐month assessment, and 293 (78.8%) completed the 24‐month assessment. Standardized response means and general linear models evaluated whether the physical function measures were responsive to self‐reported and clinician‐rated change over time.ResultsSmall to moderate effect sizes for the standardized response means supported 12‐month and 24‐month responsiveness of the HDQLIFE and Neuro‐QoL measures for those with either self‐reported or clinician‐rated declines in function. General linear models supported 12‐month and 24‐month responsiveness for all HRQOL measures relative to self‐reported declines in health, but generally only 24‐month responsiveness was supported relative to clinician‐rated declines in function.ConclusionsLongitudinal analyses indicate that the HDQLIFE and the Neuro‐QoL physical function measures are sensitive to change over time in individuals with HD. Thus, these scales exhibit evidence of responsiveness and may be useful outcome measures in future clinical trials. © 2019 International Parkinson and Movement Disorder SocietyPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154235/1/mds27908_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154235/2/mds27908.pd

    Assessing biotic contributions to CO<sub>2</sub> fluxes in northern China using the Vegetation, Photosynthesis and Respiration Model (VPRM-CHINA) and observations from 2005 to 2009

    Get PDF
    Accurately quantifying the spatiotemporal distribution of the biological component of CO2 surface–atmosphere exchange is necessary to improve top-down constraints on China's anthropogenic CO2 emissions. We provide hourly fluxes of CO2 as net ecosystem exchange (NEE; ”mol&thinsp;CO2&thinsp;m−2&thinsp;s−1) on a 0.25° × 0.25° grid by adapting the Vegetation, Photosynthesis, and Respiration Model (VPRM) to the eastern half of China for the time period from 2005 to 2009; the minimal empirical parameterization of the VPRM-CHINA makes it well suited for inverse modeling approaches. This study diverges from previous VPRM applications in that it is applied at a large scale to China's ecosystems for the first time, incorporating a novel processing framework not previously applied to existing VPRM versions. In addition, the VPRM-CHINA model prescribes methods for addressing dual-cropping regions that have two separate growing-season modes applied to the same model grid cell. We evaluate the VPRM-CHINA performance during the growing season and compare to other biospheric models. We calibrate the VPRM-CHINA with ChinaFlux and FluxNet data and scale up regionally using Weather Research and Forecasting (WRF) Model v3.6.1 meteorology and MODIS surface reflectances. When combined with an anthropogenic emissions model in a Lagrangian particle transport framework, we compare the ability of VPRM-CHINA relative to an ensemble mean of global hourly flux models (NASA CMS – Carbon Monitoring System) to reproduce observations made at a site in northern China. The measurements are heavily influenced by the northern China administrative region. Modeled hourly time series using vegetation fluxes prescribed by VPRM-CHINA exhibit low bias relative to measurements during the May–September growing season. Compared to NASA CMS subset over the study region, VPRM-CHINA agrees significantly better with measurements. NASA CMS consistently underestimates regional uptake in the growing season. We find that during the peak growing season, when the heavily cropped North China Plain significantly influences measurements, VPRM-CHINA models a CO2 uptake signal comparable in magnitude to the modeled anthropogenic signal. In addition to demonstrating efficacy as a low-bias prior for top-down CO2 inventory optimization studies using ground-based measurements, high spatiotemporal resolution models such as the VPRM are critical for interpreting retrievals from global CO2 remote-sensing platforms such as OCO-2 and OCO-3 (planned). Depending on the satellite time of day and season of crossover, efforts to interpret the relative contribution of the vegetation and anthropogenic components to the measured signal are critical in key emitting regions such as northern China – where the magnitude of the vegetation CO2 signal is shown to be equivalent to the anthropogenic signal.</p

    Constraining Fossil Fuel CO2 Emissions From Urban Area Using OCO‐2 Observations of Total Column CO2

    Full text link
    Satellite observations of the total column dry‐air CO2 (XCO2) are expected to support the quantification and monitoring of fossil fuel CO2 (ffCO2) emissions from urban areas. We evaluate the utility of the Orbiting Carbon Observatory 2 (OCO‐2) XCO2 retrievals to optimize whole‐city emissions, using a Bayesian inversion system and high‐resolution transport modeling. The uncertainties of constrained emissions related to transport model, satellite measurements, and local biospheric fluxes are quantified. For the first two uncertainty sources, we examine cities of different landscapes: “plume city” located in relatively flat terrain, represented by Riyadh and Cairo; and “basin city” located in basin terrain, represented by Los Angeles (LA). The retrieved scaling factors of emissions and their uncertainties show prominent variabilities from track to track, due to the varying meteorological conditions and relative locations of the tracks transecting plumes. To explore the performance of multiple tracks in retrieving emissions, pseudo data experiments are carried out. The estimated least numbers of tracks required to constrain the total emissions for Riyadh (<10% uncertainty), Cairo (<10%), and LA (<5%) are 8, 5, and 7, respectively. Additionally, to evaluate the impact of biospheric fluxes on derivation of the ffXCO2 enhancements, we conduct simulations for Pearl River Delta metropolitan area. Significant fractions of local XCO2 enhancements associated with local biospheric XCO2 variations are shown, which potentially lead to biased estimates of ffCO2 emissions. We demonstrate that satellite measurements can be used to improve urban ffCO2 emissions with a sufficient amount of measurements and appropriate representations of the uncertainty components.Key PointsInversion method is utilized to constrain whole‐city fossil fuel emissions with measurement and transport model errors consideredPotential of incorporating multiple tracks to obtain regular emission estimates is evaluated by pseudo data experimentsSignificant contribution of the biospheric fluxes variability to local XCO2 variation is demonstratedPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154979/1/jgrd56150_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154979/2/jgrd56150.pd

    Agreement Between Clinician-Rated Versus Patient-Reported Outcomes in Huntington Disease

    Get PDF
    BACKGROUND: Clinician-rated measures of functioning are often used as primary endpoints in clinical trials and other behavioral research in Huntington disease. As study costs for clinician-rated assessments are not always feasible, there is a question of whether patient self-report of commonly used clinician-rated measures may serve as acceptable alternatives in low risk behavioral trials. AIM: The purpose of this paper was to determine the level of agreement between self-report and clinician-ratings of commonly used functional assessment measures in Huntington disease. DESIGN: 486 participants with premanifest or manifest Huntington disease were examined. Total Functional Capacity, Functional Assessment, and Independence Scale assessments from the Unified Huntington Disease Rating scale were completed by clinicians; a self-report version was also completed by individuals with Huntington disease. Cronbach\u27s α was used to examine internal consistency, one-way analysis of variance was used to examine group differences, and paired t tests, kappa agreement coefficients, and intra-class correlations were calculated to determine agreement between raters. RESULTS: Internal consistency for self-reported ratings of functional capacity and ability were good. There were significant differences between those with premanifest, early-, and late-stage disease; those with later-stage disease reported less ability and independence than the other clinical groups. Although self-report ratings were not a perfect match with associated clinician-rated measures, differences were small. Cutoffs for achieving specified levels of agreement are provided. CONCLUSIONS: Depending on the acceptable margin of error in a study, self-reported administration of these functional assessments may be appropriate when clinician-related assessments are not feasible

    HDQLIFE: Development and Assessment of Health-Related Quality of Life in Huntington Disease (HD)

    Get PDF
    PURPOSE: Huntington disease (HD) is a chronic, debilitating genetic disease that affects physical, emotional, cognitive, and social health. Existing patient-reported outcomes (PROs) of health-related quality of life (HRQOL) used in HD are neither comprehensive, nor do they adequately account for clinically meaningful changes in function. While new PROs examining HRQOL (i.e., Neuro-QoL-Quality of Life in Neurological Disorders and PROMIS-Patient-Reported Outcomes Measurement Information System) offer solutions to many of these shortcomings, they do not include HD-specific content, nor have they been validated in HD. HDQLIFE addresses this by validating 12 PROMIS/Neuro-QoL domains in individuals with HD and by using established PROMIS methodology to develop new, HD-specific content. METHODS: New item pools were developed using cognitive debriefing with individuals with HD, and expert, literacy, and translatability reviews. Existing item banks and new item pools were field tested in 536 individuals with prodromal, early-, or late-stage HD. RESULTS: Moderate to strong relationships between Neuro-QoL/PROMIS measures and generic self-report measures of HRQOL, and moderate relationships between Neuro-QoL/PROMIS and clinician-rated measures of similar constructs supported the validity of Neuro-QoL/PROMIS in individuals with HD. Exploratory and confirmatory factor analysis, item response theory, and differential item functioning analyses were utilized to develop new item banks for Chorea, Speech Difficulties, Swallowing Difficulties, and Concern with Death and Dying, with corresponding six-item short forms. A four-item short form was developed for Meaning and Purpose. CONCLUSIONS: HDQLIFE encompasses both validated Neuro-QoL/PROMIS measures, as well as five new scales in order to provide a comprehensive assessment of HRQOL in HD

    Severity dependent distribution of impairments in PSP and CBS: Interactive visualizations

    Get PDF
    BACKGROUND: Progressive supranuclear palsy (PSP) -Richardson's Syndrome and Corticobasal Syndrome (CBS) are the two classic clinical syndromes associated with underlying four repeat (4R) tau pathology. The PSP Rating Scale is a commonly used assessment in PSP clinical trials; there is an increasing interest in designing combined 4R tauopathy clinical trials involving both CBS and PSP. OBJECTIVES: To determine contributions of each domain of the PSP Rating Scale to overall severity and characterize the probable sequence of clinical progression of PSP as compared to CBS. METHODS: Multicenter clinical trial and natural history study data were analyzed from 545 patients with PSP and 49 with CBS. Proportional odds models were applied to model normalized cross-sectional PSP Rating Scale, estimating the probability that a patient would experience impairment in each domain using the PSP Rating Scale total score as the index of overall disease severity. RESULTS: The earliest symptom domain to demonstrate impairment in PSP patients was most likely to be Ocular Motor, followed jointly by Gait/Midline and Daily Activities, then Limb Motor and Mentation, and finally Bulbar. For CBS, Limb Motor manifested first and ocular showed less probability of impairment throughout the disease spectrum. An online tool to visualize predicted disease progression was developed to predict relative disability on each subscale per overall disease severity. CONCLUSION: The PSP Rating Scale captures disease severity in both PSP and CBS. Modelling how domains change in relation to one other at varying disease severities may facilitate detection of therapeutic effects in future clinical trials

    Early-infantile onset epilepsy and developmental delay caused by bi-allelic GAD1 variants.

    Get PDF
    Gamma-aminobutyric acid (GABA) and glutamate are the most abundant amino acid neurotransmitters in the brain. GABA, an inhibitory neurotransmitter, is synthesized by glutamic acid decarboxylase (GAD). Its predominant isoform GAD67, contributes up to ∌90% of base-level GABA in the CNS, and is encoded by the GAD1 gene. Disruption of GAD1 results in an imbalance of inhibitory and excitatory neurotransmitters, and as Gad1-/- mice die neonatally of severe cleft palate, it has not been possible to determine any potential neurological dysfunction. Furthermore, little is known about the consequence of GAD1 disruption in humans. Here we present six affected individuals from six unrelated families, carrying bi-allelic GAD1 variants, presenting with developmental and epileptic encephalopathy, characterized by early-infantile onset epilepsy and hypotonia with additional variable non-CNS manifestations such as skeletal abnormalities, dysmorphic features and cleft palate. Our findings highlight an important role for GAD1 in seizure induction, neuronal and extraneuronal development, and introduce GAD1 as a new gene associated with developmental and epileptic encephalopathy

    Serotonin Transporter Imaging in Multiple System Atrophy and Parkinson’s Disease

    Full text link
    BackgroundBoth Parkinson’s disease (PD) and multiple system atrophy (MSA) exhibit degeneration of brainstem serotoninergic nuclei, affecting multiple subcortical and cortical serotoninergic projections. In MSA, medullary serotoninergic neuron pathology is well documented, but serotonin system changes throughout the rest of the brain are less well characterized.ObjectivesTo use serotonin transporter [11C]3-amino-4-(2-dimethylaminomethyl-phenylsulfaryl)-benzonitrile positron emission tomography (PET) to compare serotoninergic innervation in patients with MSA and PD.MethodsWe performed serotonin transporter PET imaging in 18 patients with MSA, 23 patients with PD, and 16 healthy controls to explore differences in brainstem, subcortical, and cortical regions of interest.ResultsPatients with MSA showed lower serotonin transporter distribution volume ratios compared with patients with PD in the medulla, raphe pontis, ventral striatum, limbic cortex, and thalamic regions, but no differences in the dorsal striatal, ventral anterior cingulate, or total cortical regions. Controls showed greater cortical serotonin transporter binding compared with PD or MSA groups but lower serotonin transporter binding in the striatum and other relevant basal ganglia regions. There were no regional differences in binding between patients with MSA–parkinsonian subtype (n = 8) and patients with MSA–cerebellar subtype (n = 10). Serotonin transporter distribution volume ratios in multiple different regions of interest showed an inverse correlation with the severity of Movement Disorders Society Unified Parkinson’s Disease Rating Scale motor score in patients with MSA but not patients with PD.ConclusionsBrainstem and some forebrain subcortical region serotoninergic deficits are more severe in MSA compared with PD and show an MSA-specific correlation with the severity of motor impairments. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/175232/1/mds29220.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/175232/2/mds29220_am.pd
    • 

    corecore