20,416 research outputs found

    Towards the Distributed Burning Regime in Turbulent Premixed Flames

    Get PDF
    Three-dimensional numerical simulations of canonical statistically-steady statistically-planar turbulent flames have been used in an attempt to produce distributed burning in lean methane and hydrogen flames. Dilatation across the flame means that extremely large Karlovitz numbers are required; even at the extreme levels of turbulence studied (up to a Karlovitz number of 8767) distributed burning was only achieved in the hydrogen case. In this case, turbulence was found to broaden the reaction zone visually by around an order of magnitude, and thermodiffusive effects (typically present for lean hydrogen flames) were not observed. In the preheat zone, the species compositions differ considerably from those of one-dimensional flames based a number of different transport models (mixture-averaged, unity Lewis number, and a turbulent eddy viscosity model). The behaviour is a characteristic of turbulence dominating non-unity Lewis number species transport, and the distinct limit is again attributed to dilatation and its effect on the turbulence. Peak local reaction rates are found to be lower in the distributed case than in the lower Karlovitz cases but higher than in the laminar flame, which is attributed to effects that arise from the modified fuel-temperature distribution that results from turbulent mixing dominating low Lewis number thermodiffusive effects. Finally, approaches to achieve distributed burning at realisable conditions are discussed; factors that increase the likelihood of realising distributed burning are higher pressure, lower equivalence ratio, higher Lewis number, and lower reactant temperature

    Correlations in Nuclear Matter

    Full text link
    We analyze the nuclear matter correlation properties in terms of the pair correlation function. To this aim we systematically compare the results for the variational method in the Lowest Order Constrained Variational (LOCV) approximation and for the Bruekner-Hartree-Fock (BHF) scheme. A formal link between the Jastrow correlation factor of LOCV and the Defect Function (DF) of BHF is established and it is shown under which conditions and approximations the two approaches are equivalent. From the numerical comparison it turns out that the two correlation functions are quite close, which indicates in particular that the DF is approximately local and momentum independent. The Equations of State (EOS) of Nuclear Matter in the two approaches are also compared. It is found that once the three-body forces (TBF) are introduced the two EOS are fairly close, while the agreement between the correlation functions holds with or without TBF.Comment: 11 figure

    AAA gunnermodel based on observer theory

    Get PDF
    The Luenberger observer theory is used to develop a predictive model of a gunner's tracking response in antiaircraft artillery systems. This model is composed of an observer, a feedback controller and a remnant element. An important feature of the model is that the structure is simple, hence a computer simulation requires only a short execution time. A parameter identification program based on the least squares curve fitting method and the Gauss Newton gradient algorithm is developed to determine the parameter values of the gunner model. Thus, a systematic procedure exists for identifying model parameters for a given antiaircraft tracking task. Model predictions of tracking errors are compared with human tracking data obtained from manned simulation experiments. Model predictions are in excellent agreement with the empirical data for several flyby and maneuvering target trajectories

    Fragmentation pathways of [Re₂(μ-OR)₃(CO)₆]– (R = H, Me) and ligand exchange reactions with oxygen donor ligands, investigated by electrospray mass spectrometry

    Get PDF
    The rhenium hydroxy and methoxy carbonyl complexes [Re₂(μOR)₃(CO)₆]⁻ (R = H or Me) have been studied by negative-ion electrospray mass spectrometry (ESMS). The complexes undergo facile exchange reactions with protic compounds, including alcohols and phenols. With dimethyl malonate, ester hydrolysis occurs giving carboxylate-containing complexes, and with H₂O₂ or ButOOH, oxidation to ReO₄⁻occurs. The feasibility and extent of these reactions can conveniently, rapidly, and unambiguously be determined by electrospray mass spectrometry, and is dependent on the acidity and steric bulk of the protic compound. The results also suggest that the complexes can be used as versatile starting materials for the synthesis of a wide range of analogous [Re₂(μ-OR)₃(CO)₆]⁻ complexes by simple reaction with an excess of the appropriate alcohol. By varying the applied cone voltage the fragmentation pathways have been investigated; the hydroxy complex undergoes dehydration followed by CO loss, whereas for the methoxy complex -hydride elimination (and CO loss) is observed, with confirmation provided by deuterium labelling studies. Under ESMS conditions, the neutral complexes [Re₂(μ-OR)₂(μ-dppf )(CO)₆] [R = H or Me; dppf = 1,1 -bis(diphenylphosphino)ferrocene] undergo substantial solvolysis and hydrolysis to give mainly mononuclear species; simple parent ions (e.g. [M + H]⁺) are not formed in appreciable abundance, probably due to the lack of an efficient ionisation pathway

    Feeding Behavior of Captive-Reared Juvenile Alligator Snapping Turtles (Macrochelys temminckii)

    Get PDF
    Feeding preference of Macrochelys temminckii (Alligator Snapping Turtle) is not well known. Juveniles reared with no prior exposure to natural prey were tested for innate prey (i.e., fish) preference and foraging ability for mussels in coarse and fine substrates. Alligator Snapping Turtles consumed fish non-selectively, except that they selected Lepomis macrochirus (Bluegill) over Gambusia affinis (Mosquitofish) in live-prey trials, and Lepomis cyanellus (Green Sunfish) over Notemigonus crysoleucas (Golden Shiners) in carrion trials. Juvenile Alligator Snapping Turtles were less active and less successful when foraging for a benthic prey species, Lampsilis siliquoidea (Fatmucket), in coarse substrate than they were when the mussels were in fine and no substrates. Juvenile Alligator Snapping Turtle preference for Bluegill in a controlled environment corresponds to predator and prey habitat associations but could also be influenced by prey (i.e., fish) behavior. Likewise, enhanced activity and prey encounters in fine substrate are consistent with observations of Alligator Snapping Turtle habitat use

    Control System for the LEDA 6.7-MeV Proton Beam Halo Experiment

    Get PDF
    Measurement of high-power proton beam-halo formation is the ongoing scientific experiment for the Low Energy Demonstration Accelerator (LEDA) facility. To attain this measurement goal, a 52-magnet beam line containing several types of beam diagnostic instrumentation is being installed. The Experimental Physics and Industrial Control System (EPICS) and commercial software applications are presently being integrated to provide a real-time, synchronous data acquisition and control system. This system is comprised of magnet control, vacuum control, motor control, data acquisition, and data analysis. Unique requirements led to the development and integration of customized software and hardware. EPICS real-time databases, Interactive Data Language (IDL) programs, LabVIEW Virtual Instruments (VI), and State Notation Language (SNL) sequences are hosted on VXI, PC, and UNIX-based platforms which interact using the EPICS Channel Access (CA) communication protocol. Acquisition and control hardware technology ranges from DSP-based diagnostic instrumentation to the PLC-controlled vacuum system. This paper describes the control system hardware and software design, and implementation.Comment: LINAC2000 Conference, 4 pg

    Universality of residence-time distributions in non-adiabatic stochastic resonance

    Get PDF
    We present mathematically rigorous expressions for the residence-time and first-passage-time distributions of a periodically forced Brownian particle in a bistable potential. For a broad range of forcing frequencies and amplitudes, the distributions are close to periodically modulated exponential ones. Remarkably, the periodic modulations are governed by universal functions, depending on a single parameter related to the forcing period. The behaviour of the distributions and their moments is analysed, in particular in the low- and high-frequency limits.Comment: 8 pages, 1 figure New version includes distinction between first-passage-time and residence-time distribution

    Adjoint analysis of the source and path sensitivities of basin-guided waves

    Get PDF
    Simulations of earthquake rupture on the southern San Andreas Fault (SAF) reveal large amplifications in the San Gabriel and Los Angeles Basins (SGB and LAB) apparently associated with long-range path effects. Geometrically similar excitation patterns can be recognized repeatedly in different SAF simulations (e.g. Love wave-like energy with predominant period around 4 s, channelled southwestwardly from the SGB into LAB), yet the amplitudes with which these distinctive wavefield patterns are excited change, depending upon source details (slip distribution, direction and velocity of rupture). We describe a method for rapid calculation of the sensitivity of such predicted wavefield features to perturbations of the source kinematics, using a time-reversed (adjoint) wavefield simulation. The calculations are analogous to those done in adjoint tomography, and the same time-reversed calculation also yields path-sensitivity kernels that give further insight into the excitation mechanism. For rupture on the southernmost 300 km of SAF, LAB excitation is greatest for slip concentrated between the northern Coachella Valley and the transverse ranges, propagating to the NE and with rupture velocities between 3250 and 3500 m s-1 along that fault segment; that is, within or slightly above the velocity range (between Rayleigh and S velocities) that is energetically precluded in the limit of a sharp rupture front, highlighting the potential value of imposing physical constraints (such as from spontaneous rupture models) on source parametrizations. LAB excitation is weak for rupture to the SW and for ruptures in either direction located north of the transverse transverse ranges, whereas Ventura Basin (VTB) is preferentially excited by NE ruptures situated north of the transverse ranges. Path kernels show that LAB excitation is mediated by surface waves deflected by the velocity contrast along the southern margin of the transverse ranges, having most of their energy in basement rock until they impinge on the eastern edge of SGB, through which they are then funnelled into LAB. VTB amplification is enhanced by a similar waveguide effec

    Direct Numerical Simulations of Type Ia Supernovae Flames II: The Rayleigh-Taylor Instability

    Full text link
    A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime to the distributed-burning regime, around densities of 10710^7 g/cc, through detailed, fully resolved simulations. A low Mach number, adaptive mesh hydrodynamics code is used to achieve the necessary resolution and long time scales. As the density is varied, we see a fundamental change in the character of the burning--at the low end of the density range the Rayleigh-Taylor instability dominates the burning, whereas at the high end the burning suppresses the instability. In all cases, significant acceleration of the flame is observed, limited only by the size of the domain we are able to study. We discuss the implications of these results on the potential for a deflagration to detonation transition.Comment: submitted to ApJ, some figures degraded due to size constraint
    corecore