187 research outputs found

    Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of ocean island basalts

    Get PDF
    EP thanks the Chateaubriand STEM fellowship program for funding. FM thanks the European Research Council under the European Community’s H2020 framework program/ERC grant agreement #637503 (Pristine) and the Agence Nationale de la Recherche for a chaire d’Excellence Sorbonne Paris CitĂ© (IDEX13C445) and for the UnivEarthS Labex program (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). PS thanks the support of the Marie Curie FP7-IOF fellowship “Isovolc”.The study of silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to discern between different models for the origins of geochemical heterogeneities in the mantle. Relatively large (∌several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes relative to the dissolved Si. In contrast, only a limited range (∌tenths of a per mil) of Si isotope fractionation has been observed from high-temperature igneous processes. Therefore, Si isotopes may be useful as tracers for the presence of crustal material within OIB mantle source regions that experienced relatively low-temperature surface processes in a manner similar to other stable isotope systems, such as oxygen. Characterizing the isotopic composition of the mantle is also of central importance to the use of the Si isotope system as a basis for comparisons with other planetary bodies (e.g., Moon, Mars, asteroids). Here we present the first comprehensive suite of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIB. Samples originate from ocean islands in the Pacific, Atlantic, and Indian Ocean basins and include representative end-members for the EM-1, EM-2, and HIMU mantle components. On average, ÎŽ30Si values for OIB (−0.32 ± 0.09‰, 2 sd) are in general agreement with previous estimates for the ÎŽ30Si value of Bulk Silicate Earth (−0.29 ± 0.07‰, 2 sd; Savage et al., 2014). Nonetheless, some small systematic variations are present; specifically, most HIMU-type (Mangaia; Cape Verde; La Palma, Canary Islands) and Iceland OIB are enriched in the lighter isotopes of Si (ÎŽ30Si values lower than MORB), consistent with recycled altered oceanic crust and lithospheric mantle in their mantle sources.PostprintPeer reviewe

    Exoskeletal predator defenses of juvenile California spiny lobsters (Panulirus interruptus) are affected by fluctuating ocean acidification-like conditions

    Get PDF
    Spiny lobsters rely on multiple biomineralized exoskeletal predator defenses that may be sensitive to ocean acidification (OA). Compromised mechanical integrity of these defensive structures may tilt predator-prey outcomes, leading to increased mortality in the lobsters’ environment. Here, we tested the effects of OA-like conditions on the mechanical integrity of selected exoskeletal defenses of juvenile California spiny lobster, Panulirus interruptus. Young spiny lobsters reside in kelp forests with dynamic carbonate chemistry due to local metabolism and photosynthesis as well as seasonal upwelling, yielding daily and seasonal fluctuations in pH. Lobsters were exposed to a series of stable and diurnally fluctuating reduced pH conditions for three months (ambient pH/stable, 7.97; reduced pH/stable 7.67; reduced pH with low fluctuations, 7.67 ± 0.05; reduced pH with high fluctuations, 7.67 ± 0.10), after which we examined the intermolt composition (Ca and Mg content), ultrastructure (cuticle and layer thickness), and mechanical properties (hardness and stiffness) of selected exoskeletal predator defenses. Cuticle ultrastructure was consistently robust to pH conditions, while mineralization and mechanical properties were variable. Notably, the carapace was less mineralized under both reduced pH treatments with fluctuations, but with no effect on material properties, and the rostral horn had lower hardness in reduced/high fluctuating conditions without a corresponding difference in mineralization. Antennal flexural stiffness was lower in reduced, stable pH conditions compared to the reduced pH treatment with high fluctuations and not correlated with changes in cuticle structure or mineralization. These results demonstrate a complex relationship between mineralization and mechanical properties of the exoskeleton under changing ocean chemistry, and that fluctuating reduced pH conditions can induce responses not observed under the stable reduced pH conditions often used in OA research. Furthermore, this study shows that some juvenile California spiny lobster exoskeletal defenses are responsive to changes in ocean carbonate chemistry, even during the intermolt period, in ways that can potentially increase susceptibility to predation among this critical life stage

    Meter-Scale Chemical and Isotopic Heterogeneities in the Oceanic Mantle, Leka Ophiolite Complex, Norway

    Get PDF
    Mantle peridotites from three 3 x 3-meter grids sampled at kilometer distances from one another in the ca. 497 Ma Leka Ophiolite Complex (LOC), Norway, are examined to investigate the chemical and isotopic nature of oceanic mantle domains at the centimeter to kilometer scale. The lithology of each grid locality is predominantly harzburgite, but includes layers and lenses of dunite and pyroxenite. Major and lithophile trace element compositions indicate a history of prior melting at pressures at or slightly below the garnet stability field. The common presence of orthopyroxenite veins likely reflects infiltration of silicic melts associated with supra-subduction zone processes. Osmium isotopes and highly siderophile element (HSE) abundance data for centimeter-scale sampling of traverses from the pyroxenites into the harzburgites reveal that the formation of the veins had little effect on Os isotopic compositions, and Os, Ir, Ru and Re abundances in the harzburgites. Adjacent to one of the orthopyroxenite veins studied, however, Pt and Pd abundances appear to have been strongly modified by interactions with vein-forming melts or fluids at distances of as much as 4– 6 cm from the pyroxenite-harzburgite contact. Leka harzburgites have initial gammaOs values (% deviation from a chondritic reference) that range from -4.7 to +2.2 (6.9% variation), with individual uncertainties of 60.2 units. Averaged initial Os isotopic compositions for harzburgites from the three grid sites separated by as much as 6 km, by contrast, differ by only a maximum of 2.6%. Isotopic heterogeneity on the centimeter to meter scale is, therefore, larger than kilometer-scale heterogeneity, indicating that at least some of the Os isotopic heterogeneity commonly observed globally among mantle peridotites is the result of processes that acted on a local scale. The general uniformity of these isotopic compositions among the three grid sites suggests that the portion of the oceanic mantle sampled by the LOC was homogenous at the kilometer scale with respect to the long-term Re/Os ratio. The long-term projected Re/Os for LOC harzburgites is similar to the average required for modern abyssal peridotites. This observation strengthens previous interpretations, based largely on data for abyssal peridotites, that state the Os isotopic evolution of oceanic mantle is consistent with a long-term 187Re/188Os of ~0.38. The present ~3 to 4% difference between the Os isotopic composition of the modern oceanic mantle and estimates for primitive mantle suggests that at least ~6% of the mass of the oceanic mantle has been removed from it in the form of Re- enriched, mafic oceanic crust. Despite the recycling of this crust back into the mantle, most of it has evidently not been mixed back into accessible portions of the upper oceanic peridotite mantle. Compared to composition estimates for the primitive mantle, the median HSE compositions for the three grid sites are moderately to strongly depleted in Pd and Re, consistent with the corresponding lithophile element evidence for 20–30% melt depletion. As with initial cOs values, most harzburgites from a given grid are characterized by greater variations in absolute and relative HSE abundances than the differences between the median abundances of the three grid sampling locales. This observation indicates that as with Os isotopes, the HSE abundance heterogeneity among the harzburgites most strongly reflects centimeter- to meter-scale melting and remobilization effects. Except for Ru, median HSE abundances for grid harzburgites are similar to median abundances for abyssal peridotites. The 30% lower median Ru/Ir in the LOC compared to the median ratio for abyssal peridotites suggests that the abundance of Ru in the oceanic mantle may be more variable than generally thought.This work was supported by National Science Foundation (NSF) Earth Science grants 1423879 (to RJW) and 1447130 (to J.M.D.D.), which are gratefully acknowledged. B.O’D. acknowledges support from a Royal Society Research Grant (RG100528) and from Natural Environment Research Council (NERC) New Investigator grant NE/J00457X/1. J.S.D. gratefully acknowledges a University College Dublin Seed Funding Grant and Science Foundation Ireland Grant No. 13/RC/2092, which was co-funded under the European Regional Development Fund

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    On the progenitor of binary neutron star merger GW170817

    Get PDF
    On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ∌40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ∌2 kpc away from the galaxy's center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy's star formation history, provided the stellar populations are older than 1 Gyr
    • 

    corecore