1,260 research outputs found

    Relationships between recruits of abalone haliotis midae, encrusting corallines and the sea urchin Parechinus angulosus

    Get PDF
    In kelp beds of the South-Western Cape, South Africa, a strong positive relationship exists between the sea urchin Parechinus angulosus and juveniles of the abalone Haliotis midae. Field surveys reported here revealed apositive, but weak, association between this urchin and H. midae recruits (i.e. individual

    Structure prediction of crystals, surfaces and nanoparticles

    Get PDF
    We review the current techniques used in the prediction of crystal structures and their surfaces and of the structures of nanoparticles. The main classes of search algorithm and energy function are summarized, and we discuss the growing role of methods based on machine learning. We illustrate the current status of the field with examples taken from metallic, inorganic and organic systems. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'

    Shadows and traces in bicategories

    Full text link
    Traces in symmetric monoidal categories are well-known and have many applications; for instance, their functoriality directly implies the Lefschetz fixed point theorem. However, for some applications, such as generalizations of the Lefschetz theorem, one needs "noncommutative" traces, such as the Hattori-Stallings trace for modules over noncommutative rings. In this paper we study a generalization of the symmetric monoidal trace which applies to noncommutative situations; its context is a bicategory equipped with an extra structure called a "shadow." In particular, we prove its functoriality and 2-functoriality, which are essential to its applications in fixed-point theory. Throughout we make use of an appropriate "cylindrical" type of string diagram, which we justify formally in an appendix.Comment: 46 pages; v2: reorganized and shortened, added proof for cylindrical string diagrams; v3: final version, to appear in JHR

    Modular and predictable assembly of porous organic molecular crystals

    No full text
    Nanoporous molecular frameworks are important in applications such as separation, storage and catalysis. Empirical rules exist for their assembly but it is still challenging to place and segregate functionality in three-dimensional porous solids in a predictable way. Indeed, recent studies of mixed crystalline frameworks suggest a preference for the statistical distribution of functionalities throughout the pores rather than, for example, the functional group localization found in the reactive sites of enzymes. This is a potential limitation for 'one-pot' chemical syntheses of porous frameworks from simple starting materials. An alternative strategy is to prepare porous solids from synthetically preorganized molecular pores. In principle, functional organic pore modules could be covalently prefabricated and then assembled to produce materials with specific properties. However, this vision of mix-and-match assembly is far from being realized, not least because of the challenge in reliably predicting three-dimensional structures for molecular crystals, which lack the strong directional bonding found in networks. Here we show that highly porous crystalline solids can be produced by mixing different organic cage modules that self-assemble by means of chiral recognition. The structures of the resulting materials can be predicted computationally, allowing in silico materials design strategies. The constituent pore modules are synthesized in high yields on gram scales in a one-step reaction. Assembly of the porous co-crystals is as simple as combining the modules in solution and removing the solvent. In some cases, the chiral recognition between modules can be exploited to produce porous organic nanoparticles. We show that the method is valid for four different cage modules and can in principle be generalized in a computationally predictable manner based on a lock-and-key assembly between modules

    From concept to crystals via prediction: multi‐component organic cage pots by social self‐sorting

    Get PDF
    We describe the a priori computational prediction and realization of multi‐component cage pots, starting with molecular predictions based on candidate precursors through to crystal structure prediction and synthesis using robotic screening. The molecules were formed by the social self‐sorting of a tri‐topic aldehyde with both a tri‐topic amine and di‐topic amine, without using orthogonal reactivity or precursors of the same topicity. Crystal structure prediction suggested a rich polymorphic landscape, where there was an overall preference for chiral recognition to form heterochiral rather than homochiral packings, with heterochiral pairs being more likely to pack window‐to‐window to form two‐component capsules. These crystal packing preferences were then observed in experimental crystal structures

    Incorporating chemical signalling factors into cell-based models of growing epithelial tissues

    Get PDF
    In this paper we present a comprehensive computational framework within which the effects of chemical signalling factors on growing epithelial tissues can be studied. The method incorporates a vertex-based cell model, in conjunction with a solver for the governing chemical equations. The vertex model provides a natural mesh for the finite element method (FEM), with node movements determined by force laws. The arbitrary Lagrangian–Eulerian formulation is adopted to account for domain movement between iterations. The effects of cell proliferation and junctional rearrangements on the mesh are also examined. By implementing refinements of the mesh we show that the finite element (FE) approximation converges towards an accurate numerical solution. The potential utility of the system is demonstrated in the context of Decapentaplegic (Dpp), a morphogen which plays a crucial role in development of the Drosophila imaginal wing disc. Despite the presence of a Dpp gradient, growth is uniform across the wing disc. We make the growth rate of cells dependent on Dpp concentration and show that the number of proliferation events increases in regions of high concentration. This allows hypotheses regarding mechanisms of growth control to be rigorously tested. The method we describe may be adapted to a range of potential application areas, and to other cell-based models with designated node movements, to accurately probe the role of morphogens in epithelial tissues

    Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework

    Get PDF
    We show that a hydrogen-bonded framework, TBAP-α, with extended π-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to 3108 ÎŒmol g^{−1} h^{−1}. This is the highest activity reported for a molecular organic crystal. By comparison, a chemically-identical but amorphous sample of TBAP was 20–200 times less active, depending on the reaction conditions, showing unambiguously that crystal packing in molecular crystals can dictate photocatalytic activity. Crystal structure prediction (CSP) was used to predict the solid-state structure of TBAP and other functionalised, conformationally-flexible pyrene derivatives. Specifically, we show that energy–structure–function (ESF) maps can be used to identify molecules such as TBAP that are likely to form extended π-stacked columns in the solid state. This opens up a methodology for the a priori computational design of molecular organic photocatalysts and other energy-relevant materials, such as organic electronics

    Predicting potential global and future distributions of the African armyworm (Spodoptera exempta) using species distribution models.

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record. Data availability The datasets generated during and/or analysed during the current study will be available in the DRYAD repository, after the manuscript is accepted [https://datadryad.org/stash/share/t-EgQOweHgcOHQ_paK1ao6PQuRsnjkGCSh63_HD4n00] with DOI number [https://doi.org/10.5061/dryad.sbcc2fr9b].Invasive species have historically been a problem derived from global trade and transport. To aid in the control and management of these species, species distribution models (SDMs) have been used to help predict possible areas of expansion. Our focal organism, the African Armyworm (AAW), has historically been known as an important pest species in Africa, occurring at high larval densities and causing outbreaks that can cause enormous economic damage to staple crops. The goal of this study is to map the AAW's present and potential distribution in three future scenarios for the region, and the potential global distribution if the species were to invade other territories, using 40 years of data on more than 700 larval outbreak reports from Kenya and Tanzania. The present distribution in East Africa coincides with its previously known distribution, as well as other areas of grassland and cropland, which are the host plants for this species. The different future climatic scenarios show broadly similar potential distributions in East Africa to the present day. The predicted global distribution shows areas where the AAW has already been reported, but also shows many potential areas in the Americas where, if transported, environmental conditions are suitable for AAW to thrive and where it could become an invasive species.Biotechnology & Biological Sciences Research Council (BBSRC
    • 

    corecore