402 research outputs found

    Idiopathic scoliosis and pineal lesions in Australian children

    Get PDF
    PURPOSE: To determine whether treatment of pineal lesions in children is associated with development of idiopathic scoliosis. METHODS: 38 boys and 10 girls with pineal lesions were identified. Their mean age at presentation was 10 years. The pineal pathology varied from cysts and epidermoid to teratoma, germinoma, pineocytoma, and glioblastoma. Treatment ranged from biopsy/extirpation to radiotherapy. RESULTS: 12 patients died. No scoliosis was found in any females or any of the deceased. Two boys had scoliosis: one had a 12-degree right upper thoracic curve with 32-degree kyphosis and the other had a 60-degree right thoracolumbar idiopathic curve, requiring a 2-stage arthrodesis. CONCLUSION: Pineal ablation is not related to the development of idiopathic scoliosis in humans

    Entropic Interactions in Suspensions of Semi-Flexible Rods: Short-Range Effects of Flexibility

    Full text link
    We compute the entropic interactions between two colloidal spheres immersed in a dilute suspension of semi-flexible rods. Our model treats the semi-flexible rod as a bent rod at fixed angle, set by the rod contour and persistence lengths. The entropic forces arising from this additional rotational degree of freedom are captured quantitatively by the model, and account for observations at short range in a recent experiment. Global fits to the interaction potential data suggest the persistence length of fd-virus is about two to three times smaller than the commonly used value of 2.2μm2.2 \mu {m}.Comment: 4 pages, 5 figures, submitted to PRE rapid communication

    Effect of meniscus modelling assumptions in a static tibiofemoral finite element model: importance of geometry over material

    Get PDF
    Finite element studies of the tibiofemoral joint have increased use in research, with attention often placed on the material models. Few studies assess the effect of meniscus modelling assumptions in image-based models on contact mechanics outcomes. This work aimed to assess the effect of modelling assumptions of the meniscus on knee contact mechanics and meniscus kinematics. A sensitivity analysis was performed using three specimen-specific tibiofemoral models and one generic knee model. The assumptions in representing the meniscus attachment on the tibia (shape of the roots and position of the attachment), the material properties of the meniscus, the shape of the meniscus and the alignment of the joint were evaluated, creating 40 model instances. The values of material parameters for the meniscus and the position of the root attachment had a small influence on the total contact area but not on the meniscus displacement or the force balance between condyles. Using 3D shapes to represent the roots instead of springs had a large influence in meniscus displacement but not in knee contact area. Changes in meniscus shape and in knee alignment had a significantly larger influence on all outcomes of interest, with differences two to six times larger than those due to material properties. The sensitivity study demonstrated the importance of meniscus shape and knee alignment on meniscus kinematics and knee contact mechanics, both being more important than the material properties or the position of the roots. It also showed that differences between knees were large, suggesting that clinical interpretations of modelling studies using single geometries should be avoided

    Inclusive electron scattering in a relativistic Green function approach

    Get PDF
    A relativistic Green function approach to the inclusive quasielastic (e,e') scattering is presented. The single particle Green function is expanded in terms of the eigenfunctions of the nonhermitian optical potential. This allows one to treat final state interactions consistently in the inclusive and in the exclusive reactions. Numerical results for the response functions and the cross sections for different target nuclei and in a wide range of kinematics are presented and discussed in comparison with experimental data.Comment: 12 pages, 7 figures, REVTeX

    Momentum and Energy Distributions of Nucleons in Finite Nuclei due to Short-Range Correlations

    Full text link
    The influence of short-range correlations on the momentum and energy distribution of nucleons in nuclei is evaluated assuming a realistic meson-exchange potential for the nucleon-nucleon interaction. Using the Green-function approach the calculations are performed directly for the finite nucleus 16^{16}O avoiding the local density approximation and its reference to studies of infinite nuclear matter. The nucleon-nucleon correlations induced by the short-range and tensor components of the interaction yield an enhancement of the momentum distribution at high momenta as compared to the Hartree-Fock description. These high-momentum components should be observed mainly in nucleon knockout reactions like (e,ep)(e,e'p) leaving the final nucleus in a state of high excitation energy. Our analysis also demonstrates that non-negligible contributions to the momentum distribution should be found in partial waves which are unoccupied in the simple shell-model. The treatment of correlations beyond the Brueckner-Hartree-Fock approximation also yields an improvement for the calculated ground-state properties.Comment: 12 pages RevTeX, 7 figures postscript files appende

    Threshold Electrodisintegration of ^3He

    Get PDF
    Cross sections were measured for the near-threshold electrodisintegration of ^3He at momentum transfer values of q=2.4, 4.4, and 4.7 fm^{-1}. From these and prior measurements the transverse and longitudinal response functions R_T and R_L were deduced. Comparisons are made against previously published and new non-relativistic A=3 calculations using the best available NN potentials. In general, for q<2 fm^{-1} these calculations accurately predict the threshold electrodisintegration of ^3He. Agreement at increasing q demands consideration of two-body terms, but discrepancies still appear at the highest momentum transfers probed, perhaps due to the neglect of relativistic dynamics, or to the underestimation of high-momentum wave-function components.Comment: 9 pages, 7 figures, 1 table, REVTEX4, submitted to Physical Review

    Lifetime distributions in the methods of non-equilibrium statistical operator and superstatistics

    Full text link
    A family of non-equilibrium statistical operators is introduced which differ by the system age distribution over which the quasi-equilibrium (relevant) distribution is averaged. To describe the nonequilibrium states of a system we introduce a new thermodynamic parameter - the lifetime of a system. Superstatistics, introduced in works of Beck and Cohen [Physica A \textbf{322}, (2003), 267] as fluctuating quantities of intensive thermodynamical parameters, are obtained from the statistical distribution of lifetime (random time to the system degeneracy) considered as a thermodynamical parameter. It is suggested to set the mixing distribution of the fluctuating parameter in the superstatistics theory in the form of the piecewise continuous functions. The distribution of lifetime in such systems has different form on the different stages of evolution of the system. The account of the past stages of the evolution of a system can have a substantial impact on the non-equilibrium behaviour of the system in a present time moment.Comment: 18 page

    Precision Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetries A2

    Get PDF
    We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 0.7 < Q^2 < 20 GeV^2 by scattering 29.1 and 32.3 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets. Our measured g2 approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3 reduced matrix elements d2p and d2n are less than two standard deviations from zero. The data are inconsistent with the Burkhardt-Cottingham sum rule if there is no pathological behavior as x->0. The Efremov-Leader-Teryaev integral is consistent with zero within our measured kinematic range. The absolute value of A2 is significantly smaller than the sqrt[R(1+A1)/2] limit.Comment: 12 pages, 4 figures, 2 table

    Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2

    Full text link
    We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0 < Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is significantly smaller than the sqrt{R} positivity limit over the measured range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range 0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl

    Measurements of the Q2Q^2-Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n

    Get PDF
    The structure functions g1p and g1n have been measured over the range 0.014 < x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV longitudinally polarized electrons from polarized protons and deuterons. We find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all available data we find Γ1pΓ1n=0.176±0.003±0.007\Gamma_1^p - \Gamma_1^n =0.176 \pm 0.003 \pm 0.007 at Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm 0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters
    corecore