
ABSTRACT

Purpose. To determine whether treatment of pineal 
lesions in children is associated with development of 
idiopathic scoliosis.
Methods. 38 boys and 10 girls with pineal lesions 
were identified. Their mean age at presentation was 
10 years. The pineal pathology varied from cysts and 
epidermoid to teratoma, germinoma, pineocytoma, 
and glioblastoma. Treatment ranged from biopsy/
extirpation to radiotherapy.
Results. 12 patients died. No scoliosis was found in 
any females or any of the deceased. Two boys had 
scoliosis: one had a 12-degree right upper thoracic 
curve with 32-degree kyphosis and the other had 
a 60-degree right thoracolumbar idiopathic curve, 
requiring a 2-stage arthrodesis.
Conclusion. Pineal ablation is not related to the 
development of idiopathic scoliosis in humans.
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INTRODUCTION

The relationship between pinealectomy, melatonin 
levels, and development of scoliosis is controversial 
and the results from animal studies are contradictory. 
Experimental pinealectomy in 3-day-old white 
leghorn chickens of both sexes leads to the 
development of thoracic scoliosis,1,2 whereas a sham 
procedure does not.3,4 The critical step is to remove 
the entire pineal gland and/or stalk.5,6 50 to 100% 
of pinealectomised chickens develop scoliosis.1,3,7–10 
Although the incidence of scoliosis is dependent on 
age at pinealectomy,11 the prevalence of scoliosis in 
chickens pinealectomised between 2 and 18 days after 
hatching is not significantly different.4 The induced 
scoliosis was similar to human idiopathic scoliosis.2 
Angular thoracic scoliosis has been reported in some 
pinealectomised chickens as well as controls.10,12 
Intra-muscular auto-transplantation of the pineal 
gland into pinealectomised chickens prevented the 
scoliosis developing in 90% of them,2 but this was 
subsequently refuted.13,14

 Melatonin (N-acetyl-5-methoxytryptamine) is the 
only hormone secreted by the poultry pineal gland.15 
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Pinealectomy on 3-day-old chickens was associated 
with reduced melatonin levels and elimination of 
the melatonin circadian rhythm.16 Although a low 
serum melatonin level was reportedly associated 
with scoliosis in pinealectomised chickens,16 others 

found it a poor indicator for scoliosis.4,17 Induced 
melatonin suppression by constant light resulted in 
scoliosis in 15% of white leghorn chickens,18 but it 
had no effect on Nihon chickens.9 Intra-peritoneal 
injections of melatonin (2.5 mg/100 mg body weight) 

Patient 
No.

Sex/age 
(years)

Diagnosis Surgery Radio-
therapy

Chemo-
therapy

Died Lesion site Scoliosis

1 M/11 Central nervous system 
germinoma

Yes Yes Yes No Pineal No

2 M/12 Intracranial germ cell Yes No Yes No Pineal No
3 F/9 Intracranial germ cell No Yes No Yes Pineal No
4 M/14 Intracranial germ cell Yes Yes Yes No Pineal No
5 M/4 Intracranial germ cell No No Yes No Pineal No
6 M/16 Intracranial germ cell Yes Yes Yes No Pineal & suprasellar No
7 M/13 Intracranial germ cell Yes No Yes No Pineal & suprasellar No
8 M/15 Intracranial germ cell Yes Yes No No Pineal No
9 F/13 Intracranial germ cell Yes No Yes Yes Pineal No
10 M/9 Intracranial germ cell Yes Yes Yes No Pineal & suprasellar No
11 M/11 Intracranial germ cell Yes No Yes No Pineal No
12 M/14 Intracranial germ cell Yes No Yes No Pineal No
13 M/15 Intracranial germ cell Yes No Yes No Pineal No
14 M/13 Intracranial germ cell Yes Yes Yes Yes Pineal No
15 M/9 Intracranial germ cell Yes Yes Yes Yes Pineal No
16 M/14 Intracranial germ cell Yes Yes No No Pineal & suprasellar No
17 M/14 Intracranial germ cell Yes Yes Yes No Pineal No
18 F/2 Intracranial germ cell No No No Yes Pineal No
19 M/8 Intracranial germ cell Yes Yes Yes No Pineal No
20 M/9 Intracranial germ cell No Yes Yes No Pineal No
21 M/13 Intracranial germ cell Yes Yes Yes No Pineal No
22 M/10 Intracranial germ cell Yes Yes Yes No Pineal No
23 F/3 Pinealoblastoma Yes Yes Yes Yes Pineal No
24 M/14 Pinealoblastoma Yes Yes Yes No Pineal No
25 M/3 Pinealoblastoma Yes  No Yes Yes Pineal No
26 M/5 Pinealoblastoma Yes Yes Yes No Pineal No
27 M/11 Pineal germinoma Yes No No No Pineal No
28 M/5 Germ cell tumour Yes No Yes No Pineal T5–T8, right, 12º
29 M/12 Pineal cyst Yes No No No Pineal T6–L1, right, 60º
30 F/14 Calcified pineal tumour Yes No No No Pineal No
31 M/18 Pinealoma No No No No Pineal No
32 M/4 Leptomeningeal dis Yes Yes No No Pineal No
33 M/6 Pinealoma No No No No Pineal No
34 M/9 Pineal teratoma No No No Yes Pineal No
35 F/17 Pineoblastoma Yes No No Yes Pineal No
36 F/11 Pineal region astrocytoma Yes No Yes No Pineal No
37 M/5 Pineal glioblastoma Yes No Yes Yes Pineal No
38 M/13 Pinealoma Yes Yes Yes Yes Pineal No
39 M/5 Pineal teratoma malignant Yes Yes Yes No Pineal No
40 M/1 Glioma pineal region Yes No No Yes Pineal No
41 M/12 Pineal germ cell malignant Yes No Yes No Pineal No
42 M/5 Pineal-hypothalamic germ 

cell tumour
Yes Yes Yes No Pineal No

43 F/12 Pineal germinoma Yes Yes Yes No Pineal No
44 F/5 Pineocytoma Yes No No No Pineal No
45 F/13 Pineal region epidermoid Yes No No No Pineal No
46 M/12 Pineal region teratoma Yes No No No Pineal No
47 M/6 Pineal germinoma No No No No Pineal No
48 M/12 Pineal germinoma No No No No Pineal No

Table
Patient characteristics and outcomes
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into pinealectomised white leghorn chickens for 3 
weeks prevented scoliosis in 80%,16 but injections of 
melatonin (2.5 mg/1 kg body weight) had no effect 
on pinealectomised Mountain Hubbard chickens.19 
The latter dose was to restore melatonin levels to a 
physiological range. Daily intraperitoneal injections of 
5-hydroxy-l-tryptophan (a precursor of both serotonin 
and melatonin) into white leghorn pinealectomised 
chickens retarded scoliosis development in 30% of all 
the chickens.20

 Other animal pinealectomy models (e.g. hamsters) 
also result in scoliosis.8 Scoliosis did not develop in 
pinealectomised quadrupedal rats but developed in 
all pinealectomised bipedal male Sprague-Dawley 
rats suggesting a postural mechanism.21 Scoliosis 
did not develop in young pinealectomised rhesus 
monkeys after a mean follow-up of 28 (range, 10–41) 
months.22

 Pineal tumours and related conditions in humans 
are rare.23–26 Scoliosis following pineal ablation in 
children has not been reported.27 A retrospective 
study of scoliosis in children with a variety of pineal 
lesions may be the closest human model to compare 
with experimental pinealectomy in animals. We 
aimed to determine if idiopathic scoliosis was 
associated with prior treatment for pineal lesions in 
children.

MATERIALS AND METHODS

Medical records of 48 Australian children (38 boys and 
10 girls) aged one to 18 (mean, 10) years presenting 
with pineal lesions between 1990 and 2003 were 
retrospectively studied (Table). Ethics approval was 
granted from relevant committees of the hospitals. 
Inclusion criteria were: patients with any kind of 
pineal lesions and non-pineal tumours compressing 
the pineal gland. Exclusion criteria were: patients 
aged >18 years at diagnosis and lesions not directly 
involving the pineal gland. Lesions varied from germ 
cell tumour, germinoma, pineoblastoma, pinealoma 
and teratoma to a pineal cyst and an epidermoid cyst. 
Melatonin levels were not recorded.
 Of 36 surviving patients, clinical examination was 
not performed for 18 who had recently taken chest 
radiographs or spine magnetic resonance images 
(MRIs); 18 others took the Adam’s forward bend test. 
Spine radiographs were not taken for patients with 
a straight spine and no truncal rotation. Thoracic 
and lumbar spine rotation was measured using a 
scoliometer. Plain chest radiographs or spine MRIs 
were available for the 12 deceased patients (7 boys, 5 
girls) shortly before their deaths.

RESULTS

The mean follow-up period was 80 (range, 7–150) 
months for surviving patients and 30 (range, 1–142) 
months for the deceased. 39 patients underwent pineal 
gland surgery (partial or total excisional biopsy). 22 
and 30 patients underwent adjuvant radiotherapy 
and chemotherapy, respectively.
 None of the deceased were noted to have 
idiopathic scoliosis on their final chest radiographs 
or spine MRIs. Among the 36 survivors, only 2 of 
the 31 boys were noted to have scoliosis. One with a 
germ cell tumour at the age of 5 years had a 12º upper 
right thoracic scoliosis and a 32º kyphosis 8 years 
later (Fig. 1). At the age of 14 years, the kyphosis did 
not progress, the scoliosis diminished, and the spine 
became nearly straight. The other presented at age 16 
years with a 60º right thoracolumbar curve (Fig. 2) 
and underwent an excision of a pineal cyst. Four years 
later, he underwent a 2-stage anterior and posterior 
arthrodesis. One boy without scoliosis was noted to 
have precocious puberty.

DISCUSSION

Cross-sectional comparisons between animal and 
human studies may not be appropriate, particularly 
in regard to the relationship between pineal function, 
melatonin, and scoliosis. Pinealectomy-induced 
scoliosis in chickens has similarities to human 
idiopathic scoliosis. Chicken scoliosis is 3-dimensional 
and involves rotation of the thoracic spine, producing 
a rib hump.28 Single and double curves occur in both 
chicken and human scoliosis. The vertebral bodies 
in chicken and human idiopathic thoracic scoliosis 
are laterally wedged at the apex of the curve.10,29,30 
The vertebral wedging may be due to anatomic 
changes in the vertebral growth plates.1 Differential 
pressures on the quadrants of the vertebral growth 
plates can cause the anatomic changes.31,32 Anatomic 
differences between human and chicken spines cloud 
the comparisons of scolioses.3,28 With spinal growth, 
most lumbar and thoracic vertebrae of chickens fuse,28 
whilst human vertebrae do not fuse spontaneously. 
In chickens the thoracic spine is naturally lordotic, 
whilst in humans it is kyphotic. A relative overgrowth 
of the anterior elements of the human spine, resulting 
in thoracic lordosis, is important in the pathogenesis 
of the 3-dimensional deformity of thoracic scoliosis.33 
This theory has been supported by radiological 
and MRI studies of idiopathic scoliosis.34,35 Chicken 
scoliosis has no predilection for gender or side, 
whereas human idiopathic scoliosis commonly occurs 
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on the right side of female thoracic spines. Scoliosis 
in pinealectomised chickens is only in the thoracic 
spine,8 whereas human idiopathic scoliosis can 
also occur in the lumbar spine. The thoracolumbar 
junction was identified as the apex of the scoliotic 
curve in pinealectomised chickens.36

 Although pinealectomy causes scoliosis in 50 
to 100% of chickens, scoliosis also develops in 55 to 

90% of highly inbred chickens originating from white 
leghorns.37–39 68% of the inbred roosters and 46% of 
the hens have scoliosis.40 Three genes are responsible 
for such scoliosis.41 Scoliosis has been experimentally 
enhanced in genetically engineered chickens by 
dietary means, including feeding aminonitriles or 
deprivation of trace nutrients such as copper, Vitamin 
B-6, or manganese.42,43 Genetic studies of adolescent 
idiopathic scoliosis indicate that about 11% of first-
degree relatives are affected, 2.4% for second-degree 
relatives, and 1.4% for third-degree relatives.44–46 
Monozygotic twins have a high concordance rate 
for idiopathic scoliosis (about 73%) compared to 
dizygotic twins.47–49 Genetic linkages to chromosomes 
6p, 10q, 18q,50 19p13,51 17p11,52 and X53 for adolescent 
idiopathic scoliosis have been reported.
 The relevance of melatonin secretion in chickens 
to the development of experimental scoliosis is 
conflicting. Human adolescents54,55 and juveniles56 
with progressive idiopathic scoliosis were reported to 
have reduced night-time serum levels of melatonin, 
although these findings have not been confirmed.57–59 
Methods for identifying melatonin secretion varied 
between studies and included night-time and day-
time serum levels as well as 24-hour urinary excretion 
measurements. Because the ages of scoliotic subjects 
varied between reports, melatonin levels could 
influence pre-menarchal scoliotic development rather 
than in adolescence.60 An abnormality of melatonin 
receptors was implicated in a study on Hereditary 
Lordoscoliotic Rabbits.61 Polymorphism of melatonin 
1A receptor on chromosome 4q was not linked with 
human idiopathic scoliosis.62 Impaired melatonin 
signalling was linked with human idiopathic scoliosis 
but melatonin receptors were normal.63

Figure 1 Radiographs of a 13-year-old boy showing a 12º 
upper right thoracic scoliosis and a 32º kyphosis.

(a) (b)

Figure 2 (a) Magnetic resonance images of the brain of a 12-year-old boy showing a pineal cyst (arrows). (b) Radiograph 
showing right thoracic scoliosis at the age of 16 years.
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