875 research outputs found
The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change
The current distribution of forest genetic resources on Earth is the result of a combination of natural processes and human actions. Over time, tree populations have become adapted to their habitats including the local ecological disturbances they face. As the planet enters a phase of human-induced climate change of unprecedented speed and magnitude, however, previously locally-adapted populations are rendered less suitable for new conditions, and ânaturalâ biotic and abiotic disturbances are taken outside their historic distribution, frequency and intensity ranges. Tree populations rely on phenotypic plasticity to survive in extant locations, on genetic adaptation to modify their local phenotypic optimum or on migration to new suitable environmental conditions. The rate of required change, however, may outpace the ability to respond, and tree species and populations may become locally extinct after specific, but as yet unknown and unquantified, tipping points are reached. Here, we review the importance of forest genetic resources as a source of evolutionary potential for adaptation to changes in climate and other ecological factors. We particularly consider climate-related responses in the context of linkages to disturbances such as pests, diseases and fire, and associated feedback loops. The importance of management strategies to conserve evolutionary potential is emphasised and recommendations for policy-makers are provided
A BQP-complete problem related to the Ising model partition function via a new connection between quantum circuits and graphs
We present a simple construction that maps quantum circuits to graphs and
vice-versa. Inspired by the results of D.A. Lidar linking the Ising partition
function with quadratically signed weight enumerators (QWGTs), we also present
a BQP-complete problem for the additive approximation of a function over
hypergraphs related to the generating function of Eulerian subgraphs for
ordinary graphs. We discuss connections with the Ising partition function.Comment: 12 pages, 2 figure
Confronting models on cosmic ray interactions with particle physics at LHC energies
Inelastic pp collisions are dominated by soft (low momentum transfer) physics
where perturbative QCD cannot be fully applied. A deep understanding of both
soft and semi-hard processes is crucial for predictions of minimum bias and
underlying events of the now coming on line pp Large Hadron Collider (LHC).
Moreover, the interaction of cosmic ray particles entering in the atmosphere is
extremely sensitive to these soft processes and consequently cannot be
formulated from first principles. Because of this, air shower analyses strongly
rely on hadronic interaction models, which extrapolate collider data several
orders of magnitude. A comparative study of Monte Carlo simulations of pp
collisions (at the LHC center-of-mass energy ~ 14 TeV) using the most popular
hadronic interaction models for ultrahigh energy cosmic ray (SIBYLL and QGSJET)
and for collider physics (the PYTHIA multiparton model) is presented. The most
relevant distributions are studied including those observables from diffractive
events with the aim of discriminating between the different models.Comment: 8 pages revtex, 8 figures, added reference
Retailing in the United Kingdom - a synopsis
This paper illustrates the structure of, and trends in, the retail market of the United Kingdom (UK). This industry analysis describes the retail environment compared to continental Europe and considers the regulatory issues which have helped form this retail environment. By using secondary data we describe concentration and consolidation tendencies and explain specific features of the UK retail market. Major trends are identified and discussed, concluding with an outlook on future developments
Relativistic Random-Phase Approximation with density-dependent meson-nucleon couplings
The matrix equations of the relativistic random-phase approximation (RRPA)
are derived for an effective Lagrangian characterized by density-dependent
meson-nucleon vertex functions. The explicit density dependence of the
meson-nucleon couplings introduces rearrangement terms in the residual two-body
interaction, that are essential for a quantitative description of excited
states. Illustrative calculations of the isoscalar monopole, isovector dipole
and isoscalar quadrupole response of Pb, are performed in the fully
self-consistent RRPA framework, based on effective interactions with a
phenomenological density dependence adjusted to nuclear matter and ground-state
properties of spherical nuclei. The comparison of the RRPA results on multipole
giant resonances with experimental data constrains the parameters that
characterize the isoscalar and isovector channel of the density-dependent
effective interactions.Comment: RevTeX, 8 eps figures, submitted to Phys. Rev.
Tuberculosis serosurveillance and management practices of captive African elephants (Loxodonta africana) in the Kavango-Zambezi Transfrontier Conservation Area
Transfrontier conservation areas represent an international effort to encourage conservation and sustainable development. Their success faces a number of challenges, including disease management in wildlife, livestock and humans. Tuberculosis (TB) affects humans and a multitude of nonâhuman animal species and is of particular concern in subâSaharan Africa. The KavangoâZambezi Transfrontier Conservation Area encompasses five countries, including Zimbabwe, and is home to the largest contiguous population of freeâranging elephants in Africa. Elephants are known to be susceptible to TB; thus, understanding TB status, exposure and transmission risks to and from elephants in this area is of interest for both conservation and human health. To assess risk factors for TB seroprevalence, a questionnaire was used to collect data regarding elephant management at four ecotourism facilities offering elephantâback tourist rides in the Victoria Falls area of Zimbabwe. Thirtyâfive working African elephants were screened for Mycobacterium tuberculosis complex antibodies using the ElephantTB StatâPak and the DPP VetTB Assay for elephants. Six of 35 elephants (17.1%) were seropositive. The risk factor most important for seropositive status was time in captivity. This is the first study to assess TB seroprevalence and risk factors in working African elephants in their home range. Our findings will provide a foundation to develop guidelines to protect the health of captive and freeâranging elephants in the southern African context, as well as elephant handlers through simple interventions. Minimizing exposure through shared feed with other wildlife, routine TB testing of elephant handlers and regular serological screening of elephants are recommended as preventive measures.Financial support for elephant sample collection was provided by the Institute of Tropical Medicine, Antwerp, Belgium and the framework agreement (FA3) with the Belgian Development Cooperation, the National Research Foundation South African Research Chair Initiative (NRF SARChI), and the International Wildlife Health Institute. Laura Rosen was supported by a Morris Animal Foundation Veterinary Fellowship for Advanced Study (grant ID: D15ZOâ906).http://wileyonlinelibrary.com/journal/tbed2019-04-01hj2018Veterinary Tropical Disease
Search for Global Dipole Enhancements in the HiRes-I Monocular Data above 10^{18.5} eV
Several proposed source models for Ultra-High Energy Cosmic Rays (UHECRs)
consist of dipole distributions oriented towards major astrophysical landmarks
such as the galactic center, M87, or Centaurus A. We use a comparison between
real data and simulated data to show that the HiRes-I monocular data for
energies above 10^{18.5} eV is, in fact, consistent with an isotropic source
model. We then explore methods to quantify our sensitivity to dipole source
models oriented towards the Galactic Center, M87, and Centaurus A.Comment: 17 pages, 31 figure
Schwinger-Dyson approach to non-equilibrium classical field theory
In this paper we discuss a Schwinger-Dyson [SD] approach for determining the
time evolution of the unequal time correlation functions of a non-equilibrium
classical field theory, where the classical system is described by an initial
density matrix at time . We focus on field theory in 1+1
space time dimensions where we can perform exact numerical simulations by
sampling an ensemble of initial conditions specified by the initial density
matrix. We discuss two approaches. The first, the bare vertex approximation
[BVA], is based on ignoring vertex corrections to the SD equations in the
auxiliary field formalism relevant for 1/N expansions. The second approximation
is a related approximation made to the SD equations of the original formulation
in terms of alone. We compare these SD approximations as well as a
Hartree approximation with exact numerical simulations. We find that both
approximations based on the SD equations yield good agreement with exact
numerical simulations and cure the late time oscillation problem of the Hartree
approximation. We also discuss the relationship between the quantum and
classical SD equations.Comment: 36 pages, 5 figure
Observation of the Ankle and Evidence for a High-Energy Break in the Cosmic Ray Spectrum
We have measured the cosmic ray spectrum at energies above eV using
the two air fluorescence detectors of the High Resolution Fly's Eye experiment
operating in monocular mode. We describe the detector, PMT and atmospheric
calibrations, and the analysis techniques for the two detectors. We fit the
spectrum to models describing galactic and extragalactic sources. Our measured
spectrum gives an observation of a feature known as the ``ankle'' near eV, and strong evidence for a suppression near eV.Comment: 14 pages, 9 figures. To appear in Physics Letters B. Accepted versio
- âŠ