256 research outputs found

    Collective Effects in Linear Spectroscopy of Dipole-Coupled Molecular Arrays

    Get PDF
    We present a consistent analysis of linear spectroscopy for arrays of nearest neighbor dipole-coupled two-level molecules that reveals distinct signatures of weak and strong coupling regimes separated for infinite size arrays by a quantum critical point. In the weak coupling regime, the ground state of the molecular array is disordered, but in the strong coupling regime it has (anti)ferroelectric ordering. We show that multiple molecular excitations (odd/even in weak/strong coupling regime) can be accessed directly from the ground state. We analyze the scaling of absorption and emission with system size and find that the oscillator strengths show enhanced superradiant behavior in both ordered and disordered phases. As the coupling increases, the single excitation oscillator strength rapidly exceeds the well known Heitler-London value. In the strong coupling regime we show the existence of a unique spectral transition with excitation energy that can be tuned by varying the system size and that asymptotically approaches zero for large systems. The oscillator strength for this transition scales quadratically with system size, showing an anomalous one-photon superradiance. For systems of infinite size, we find a novel, singular spectroscopic signature of the quantum phase transition between disordered and ordered ground states. We outline how arrays of ultra cold dipolar molecules trapped in an optical lattice can be used to access the strong coupling regime and observe the anomalous superradiant effects associated with this regime.Comment: 12 pages, 7 figures main tex

    Hot Carrier Transport and Photocurrent Response in Graphene

    Full text link
    Strong electron-electron interactions in graphene are expected to result in multiple-excitation generation by the absorption of a single photon. We show that the impact of carrier multiplication on photocurrent response is enhanced by very inefficient electron cooling, resulting in an abundance of hot carriers. The hot-carrier-mediated energy transport dominates the photoresponse and manifests itself in quantum efficiencies that can exceed unity, as well as in a characteristic dependence of the photocurrent on gate voltages. The pattern of multiple photocurrent sign changes as a function of gate voltage provides a fingerprint of hot-carrier-dominated transport and carrier multiplication.Comment: 4 pgs, 2 fg

    Ultrafast Optical-Pump Terahertz-Probe Spectroscopy of the Carrier Relaxation and Recombination Dynamics in Epitaxial Graphene

    Full text link
    The ultrafast relaxation and recombination dynamics of photogenerated electrons and holes in epitaxial graphene are studied using optical-pump Terahertz-probe spectroscopy. The conductivity in graphene at Terahertz frequencies depends on the carrier concentration as well as the carrier distribution in energy. Time-resolved studies of the conductivity can therefore be used to probe the dynamics associated with carrier intraband relaxation and interband recombination. We report the electron-hole recombination times in epitaxial graphene for the first time. Our results show that carrier cooling occurs on sub-picosecond time scales and that interband recombination times are carrier density dependent.Comment: 4 pages, 5 figure

    Competing Ultrafast Energy Relaxation Pathways in Photoexcited Graphene

    Get PDF
    For most optoelectronic applications of graphene a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier-carrier scattering -- creating an elevated carrier temperature -- and optical phonon emission. At present, it is not clear what determines the dominating relaxation pathway. Here we reach a unifying picture of the ultrafast energy relaxation by investigating the terahertz photoconductivity, while varying the Fermi energy, photon energy, and fluence over a wide range. We find that sufficiently low fluence (\lesssim 4 μ\muJ/cm2^2) in conjunction with sufficiently high Fermi energy (\gtrsim 0.1 eV) gives rise to energy relaxation that is dominated by carrier-carrier scattering, which leads to efficient carrier heating. Upon increasing the fluence or decreasing the Fermi energy, the carrier heating efficiency decreases, presumably due to energy relaxation that becomes increasingly dominated by phonon emission. Carrier heating through carrier-carrier scattering accounts for the negative photoconductivity for doped graphene observed at terahertz frequencies. We present a simple model that reproduces the data for a wide range of Fermi levels and excitation energies, and allows us to qualitatively assess how the branching ratio between the two distinct relaxation pathways depends on excitation fluence and Fermi energy.Comment: Nano Letters 201

    Intrinsic response time of graphene photodetectors

    Get PDF
    Graphene-based photodetectors are promising new devices for high-speed optoelectronic applications. However, despite recent efforts, it is not clear what determines the ultimate speed limit of these devices. Here, we present measurements of the intrinsic response time of metal-graphene-metal photodetectors with monolayer graphene using an optical correlation technique with ultrashort laser pulses. We obtain a response time of 2.1 ps that is mainly given by the short lifetime of the photogenerated carriers. This time translates into a bandwidth of ~262 GHz. Moreover, we investigate the dependence of the response time on gate voltage and illumination laser power

    Thickness Estimation of Epitaxial Graphene on SiC using Attenuation of Substrate Raman Intensity

    Full text link
    A simple, non-invasive method using Raman spectroscopy for the estimation of the thickness of graphene layers grown epitaxially on silicon carbide (SiC) is presented, enabling simultaneous determination of thickness, grain size and disorder using the spectra. The attenuation of the substrate Raman signal due to the graphene overlayer is found to be dependent on the graphene film thickness deduced from X-ray photoelectron spectroscopy and transmission electron microscopy of the surfaces. We explain this dependence using an absorbing overlayer model. This method can be used for mapping graphene thickness over a region and is capable of estimating thickness of multilayer graphene films beyond that possible by XPS and Auger electron spectroscopy (AES).Comment: 14 pages, 9 figure

    Electrical Control of Plasmon Resonance with Graphene

    Full text link
    Surface plasmon, with its unique capability to concentrate light into sub-wavelength volume, has enabled great advances in photon science, ranging from nano-antenna and single-molecule Raman scattering to plasmonic waveguide and metamaterials. In many applications it is desirable to control the surface plasmon resonance in situ with electric field. Graphene, with its unique tunable optical properties, provides an ideal material to integrate with nanometallic structures for realizing such control. Here we demonstrate effective modulation of the plasmon resonance in a model system composed of hybrid graphene-gold nanorod structure. Upon electrical gating the strong optical transitions in graphene can be switched on and off, which leads to significant modulation of both the resonance frequency and quality factor of plasmon resonance in gold nanorods. Hybrid graphene-nanometallic structures, as exemplified by this combination of graphene and gold nanorod, provide a general and powerful way for electrical control of plasmon resonances. It holds promise for novel active optical devices and plasmonic circuits at the deep subwavelength scale

    Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure

    Get PDF
    Ultrafast electron thermalization - the process leading to Auger recombination, carrier multiplication via impact ionization and hot carrier luminescence - occurs when optically excited electrons in a material undergo rapid electron-electron scattering to redistribute excess energy and reach electronic thermal equilibrium. Due to extremely short time and length scales, the measurement and manipulation of electron thermalization in nanoscale devices remains challenging even with the most advanced ultrafast laser techniques. Here, we overcome this challenge by leveraging the atomic thinness of two-dimensional van der Waals (vdW) materials in order to introduce a highly tunable electron transfer pathway that directly competes with electron thermalization. We realize this scheme in a graphene-boron nitride-graphene (G-BN-G) vdW heterostructure, through which optically excited carriers are transported from one graphene layer to the other. By applying an interlayer bias voltage or varying the excitation photon energy, interlayer carrier transport can be controlled to occur faster or slower than the intralayer scattering events, thus effectively tuning the electron thermalization pathways in graphene. Our findings, which demonstrate a novel means to probe and directly modulate electron energy transport in nanoscale materials, represent an important step toward designing and implementing novel optoelectronic and energy-harvesting devices with tailored microscopic properties.Comment: Accepted to Nature Physic
    corecore