43 research outputs found

    Distribution, morphology, and genetic affinities of dwarf embedded Fucus populations from the Northwest Atlantic Ocean

    Get PDF
    Dwarf embedded Fucus populations in the Northwest Atlantic Ocean are restricted to the upper intertidal zone in sandy salt marsh environments; they lack holdfasts and are from attached parental populations of F. spiralis or F. spiralis x F. vesiculosus hybrids after breakage and entanglement with halophytic marsh grasses. Dwarf forms are dichotomously branched, flat, and have a mean overall length and width of 20.3 and 1.3 mm, respectively. Thus, they are longer than Irish (mean 9.3 mm) and Alaskan (mean 15.0 mm) populations identified as F cottonii. Reciprocal transplants of different Fucus taxa in a Maine salt marsh confirm that F spiralis can become transformed into dwarf embedded thalli within the high intertidal zone, while the latter can grow into F. s. ecad lutarius within the mid intertidal zone. Thus, vertical transplantation can modify fucoid morphology and result in varying ecads. Microsatellite markers indicate that attached F spiralis and F vesiculosus are genetically distinct, while dwarf forms may arise via hybridization between the two taxa. The ratio of intermediate to species-specific-genotypes decreased with larger thalli. Also, F s. ecad lutarius consists of a mixture of intermediate and pure genotypes, while dwarf thalli show a greater frequency of hybrids

    Using the C-O stretch to unravel the nature of hydrogen bonding in low-temperature solid methanol-water condensates

    Get PDF
    Transmission infrared spectroscopy has been used in a systematic laboratory study to investigate hydrogen bonding in binary mixtures of CH3OH and H2O, vapour deposited at 30 K, as a function of CH3OH/H2O mixing ratio, R. Strong intermolecular interactions are evident between CH3OH and H2O with infrared band profiles of the binary ices differing from that of the pure components and changing significantly with R. Consistent evidence from the O–H and C–H band profiles and detailed analysis of the C–O stretch band reveal two different hydrogen bonding structural regimes below and above R=0.6–0.7. The vapour deposited solid mixtures were found to exhibit behaviour similar to that of liquids with evidence of inhomogeneity and higher coordination number of hydrogen bonds that are concentration dependent. The C–O stretch band was found to consist of three components around 1039 cm-1 (’blue’), 1027 cm-1(’middle’) and 1011 cm-1 (’red’). The ’blue’ and ’middle’ components corresponding to environments with CH3OH dominating as a proton donor (PD) and proton acceptor (PA) respectively reveal preferential bonding of CH3OH as a PA and H2O as a PD in the mixtures. The ’red’ component is only present in the presence of H2O and has been assigned to the involvement of both lone pairs of electrons on the oxygen atom of CH3OH as a PA to two PD H2O atoms. Cooperative effects are evident with concurrent blue-shifts in the C–H stretching modes of CH3OH below R=0.6 indicating CH3 group participation in hydrogen bonding

    Probing the interaction between solid benzene and water using vacuum ultraviolet and infrared spectroscopy

    Get PDF
    We present results of a combined vacuum ultravioloet (VUV) and infrared (IR) photoabsorption study of amorphous benzene:water mixtures and layers to investigate the benzene-water interaction in the solid phase. UV spectra of 1:1, 1:10 and 1:100 benzene:water mixtures at 24 K reveal a concentration dependent shift in the energies of the 1B2u, 1B1u and 1E1u electronic states of benzene. All the electronic bands blueshift from pure amorphous benzene towards gas phase energies with increasing water concentration. IR results reveal a strong dOH-π benzene-water interaction via the dangling OH stretch of water with the delocalised π system of the benzene molecule. Although this interaction influences the electronic states of benzene with the benzenewater interaction causing a redshift in the electronic states from that of the free benzene molecule, the benzene-benzene interaction has a more significant effect on the electronic states of benzene. VUV spectra of benzene and water layers show evidence of non-wetting between benzene and water, characterised by Rayleigh scattering tails at wavelengths greater than 220 nm. Our results also show evidence of benzene-water interaction at the benzene-water interface affecting both the benzene and the water electronic states. Annealing the mixtures and layers of benzene and water show that benzene remains trapped within in/under water ice until water desorption near 160 K. These first systematic studies of binary amorphous mixtures in the VUV, supported with complementary IR studies, provide a deeper insight into the influence of intermolecular interactions on intramolecular electronic states with significant implications for our understanding of photochemical processes in more realistic astrochemical environments

    Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae

    Get PDF
    Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (EGSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. EGSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (-340 to -350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H+/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H+/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions

    Saccharomyces cerevisiae genes involved in survival of heat shock

    Get PDF
    The heat-shock response in cells, involving increased transcription of a specific set of genes in response to a sudden increase in temperature, is a highly conserved biological response occurring in all organisms. Despite considerable attention to the processes activated during heat shock, less is known about the role of genes in survival of a sudden temperature increase. Saccharomyces cerevisiae genes involved in the maintenance of heat-shock resistance in exponential and stationary phase were identified by screening the homozygous diploid deletants in nonessential genes and the heterozygous diploid mutants in essential genes for survival after a sudden shift in temperature from 30 to 50. More than a thousand genes were identified that led to altered sensitivity to heat shock, with little overlap between them and those previously identified to affect thermotolerance. There was also little overlap with genes that are activated or repressed during heat-shock, with only 5% of them regulated by the heat-shock transcription factor. The target of rapamycin and protein kinase A pathways, lipid metabolism, vacuolar H+-ATPase, vacuolar protein sorting, and mitochondrial genome maintenance/translation were critical to maintenance of resistance. Mutants affected in l-tryptophan metabolism were heat-shock resistant in both growth phases; those affected in cytoplasmic ribosome biogenesis and DNA double-strand break repair were resistant in stationary phase, and in mRNA catabolic processes in exponential phase. Mutations affecting mitochondrial genome maintenance were highly represented in sensitive mutants. The cell division transcription factor Swi6p and Hac1p involved in the unfolded protein response also play roles in maintenance of heat-shock resistance

    Genetic screening reveals phospholipid metabolism as a key regulator of the biosynthesis of the redox-active lipid coenzyme Q.

    Get PDF
    Mitochondrial energy production and function rely on optimal concentrations of the essential redox-active lipid, coenzyme Q (CoQ). CoQ deficiency results in mitochondrial dysfunction associated with increased mitochondrial oxidative stress and a range of pathologies. What drives CoQ deficiency in many of these pathologies is unknown, just as there currently is no effective therapeutic strategy to overcome CoQ deficiency in humans. To date, large-scale studies aimed at systematically interrogating endogenous systems that control CoQ biosynthesis and their potential utility to treat disease have not been carried out. Therefore, we developed a quantitative high-throughput method to determine CoQ concentrations in yeast cells. Applying this method to the Yeast Deletion Collection as a genome-wide screen, 30 genes not known previously to regulate cellular concentrations of CoQ were discovered. In combination with untargeted lipidomics and metabolomics, phosphatidylethanolamine N-methyltransferase (PEMT) deficiency was confirmed as a positive regulator of CoQ synthesis, the first identified to date. Mechanistically, PEMT deficiency alters mitochondrial concentrations of one-carbon metabolites, characterized by an increase in the S-adenosylmethionine to S-adenosylhomocysteine (SAM-to-SAH) ratio that reflects mitochondrial methylation capacity, drives CoQ synthesis, and is associated with a decrease in mitochondrial oxidative stress. The newly described regulatory pathway appears evolutionary conserved, as ablation of PEMT using antisense oligonucleotides increases mitochondrial CoQ in mouse-derived adipocytes that translates to improved glucose utilization by these cells, and protection of mice from high-fat diet-induced insulin resistance. Our studies reveal a previously unrecognized relationship between two spatially distinct lipid pathways with potential implications for the treatment of CoQ deficiencies, mitochondrial oxidative stress/dysfunction, and associated diseases
    corecore