6,444 research outputs found

    Probability Models for Degree Distributions of Protein Interaction Networks

    Full text link
    The degree distribution of many biological and technological networks has been described as a power-law distribution. While the degree distribution does not capture all aspects of a network, it has often been suggested that its functional form contains important clues as to underlying evolutionary processes that have shaped the network. Generally, the functional form for the degree distribution has been determined in an ad-hoc fashion, with clear power-law like behaviour often only extending over a limited range of connectivities. Here we apply formal model selection techniques to decide which probability distribution best describes the degree distributions of protein interaction networks. Contrary to previous studies this well defined approach suggests that the degree distribution of many molecular networks is often better described by distributions other than the popular power-law distribution. This, in turn, suggests that simple, if elegant, models may not necessarily help in the quantitative understanding of complex biological processes.

    Influence of the COVID-19 Lockdown and Restart on the Injury Incidence and Injury Burden in Men's Professional Football Leagues in 2020: The UEFA Elite Club Injury Study.

    Full text link
    BACKGROUND: Studies on football and the coronavirus disease 2019 (COVID-19) have mainly focused on the lockdown consequences for player fitness, the resumption of football training, and how to safely restart the league play, but injury data are scarce. OBJECTIVE: To describe the injury incidence and injury burden in men's professional football teams during the pandemic year of 2020. METHODS: Nineteen teams in 12 countries prospectively registered data on player-exposure and time-loss injuries throughout 2020. All major football leagues were paused as a direct response to the pandemic in March 2020 and were thereafter completely cancelled or restarted after a lockdown interval of at least two months. Historical data from 43 teams in the same cohort during the five preceding years (2015-2019) were used as reference. Between-season and within-season comparisons were made for injury incidence (number of injuries per 1000 h) and injury burden (number of absence days per 1000 h) with 95% confidence intervals and interquartile ranges. RESULTS: There was no increased match injury incidence or injury burden following the restart in 2020 compared with other time periods of 2020 and the corresponding periods 2015-2019. There was an increased training injury incidence and injury burden immediately during the lockdown in 2020, and they remained elevated also following the restart, being higher in 2020 compared with 2015-2019, respectively. The injury characteristics during the first months of the new 2020/21 season (August/September-December) were similar between the five teams that cancelled their 2019/20 season in March 2020 and the 14 teams that restarted their season in May/June 2020. CONCLUSIONS: There was no increased match injury incidence or injury burden following the COVID-19 lockdown and restart of the football season in 2020, but training injury incidence and injury burden were elevated and higher than in 2015-2019

    Genome sequence of an alphaherpesvirus from a beluga whale (Delphinapterus leucas)

    Get PDF
    Beluga whale alphaherpesvirus 1 was isolated from a blowhole swab taken from a juvenile beluga whale. The genome is 144,144 bp in size and contains 86 putative genes. The virus groups phylogenetically with members of the genus Varicellovirus in subfamily Alphaherpesvirinae and is the first alphaherpesvirus sequenced from a marine mammal

    Calculations of the Local Density of States for some Simple Systems

    Full text link
    A recently proposed convolution technique for the calculation of local density of states is described more thouroughly and new results of its application are presented. For separable systems the exposed method allows to construct the ldos for a higher dimensionality out of lower dimensional parts. Some practical and theoretical aspects of this approach are also discussed.Comment: 5 pages, 3 figure

    Simple strong glass forming models: mean-field solution with activation

    Full text link
    We introduce simple models, inspired by previous models for froths and covalent glasses, with trivial equilibrium properties but dynamical behaviour characteristic of strong glass forming systems. These models are also a generalization of backgammon or urn models to a non--constant number of particles, where entropic barriers are replaced by energy barriers, allowing for the existence of activated processes. We formulate a mean--field version of the models, which keeps most of the features of the finite dimensional ones, and solve analytically the out--of--equilibrium dynamics in the low temperature regime where activation plays an essential role.Comment: 18 pages, 9 figure

    Simulation of networks of spiking neurons: A review of tools and strategies

    Full text link
    We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin-Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.Comment: 49 pages, 24 figures, 1 table; review article, Journal of Computational Neuroscience, in press (2007

    A study of the gravitational wave form from pulsars II

    Full text link
    We present analytical and numerical studies of the Fourier transform (FT) of the gravitational wave (GW) signal from a pulsar, taking into account the rotation and orbital motion of the Earth. We also briefly discuss the Zak-Gelfand Integral Transform. The Zak-Gelfand Integral Transform that arises in our analytic approach has also been useful for Schrodinger operators in periodic potentials in condensed matter physics (Bloch wave functions).Comment: 6 pages, Sparkler talk given at the Amaldi Conference on Gravitational waves, July 10th, 2001. Submitted to Classical and Quantum Gravit

    Photoemission spectra of many-polaron systems

    Full text link
    The cross over from low to high carrier densities in a many-polaron system is studied in the framework of the one-dimensional spinless Holstein model, using unbiased numerical methods. Combining a novel quantum Monte Carlo approach and exact diagonalization, accurate results for the single-particle spectrum and the electronic kinetic energy on fairly large systems are obtained. A detailed investigation of the quality of the Monte Carlo data is presented. In the physically most important adiabatic intermediate electron-phonon coupling regime, for which no analytical results are available, we observe a dissociation of polarons with increasing band filling, leading to normal metallic behavior, while for parameters favoring small polarons, no such density-driven changes occur. The present work points towards the inadequacy of single-polaron theories for a number of polaronic materials such as the manganites.Comment: 15 pages, 13 figures; final version, accepted for publication in Phys. Rev.

    RXTE Observations of 1A 1744-361: Correlated Spectral and Timing Behavior

    Get PDF
    We analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of the transient low mass X-ray binary (LMXB) system 1A 1744-361. We explore the X-ray intensity and spectral evolution of the source, perform timing analysis, and find that 1A 1744-361 shows `atoll' behavior during the outbursts. The color-color diagram indicates that this LMXB was observed in a low intensity spectrally hard (low-hard) state and in a high intensity `banana' state. The low-hard state shows a horizontal pattern in the color-color diagram, and the previously reported `dipper QPO' appears only during this state. We also perform energy spectral analyses, and report the first detection of broad iron emission line and iron absorption edge from 1A 1744-361.Comment: 20 pages, 4 tables, 4 figures, accepted for publication in Ap
    corecore