5,601 research outputs found

    Other‐Sacrificing Options

    Get PDF
    I argue that you can be permitted to discount the interests of your adversaries even though doing so would be impartially suboptimal. This means that, in addition to the kinds of moral options that the literature traditionally recognises, there exist what I call other-sacrificing options. I explore the idea that you cannot discount the interests of your adversaries as much as you can favour the interests of your intimates; if this is correct, then there is an asymmetry between negative partiality toward your adversaries and positive partiality toward your intimates

    A Supercooled Spin Liquid State in the Frustrated Pyrochlore Dy2Ti2O7

    Full text link
    A "supercooled" liquid develops when a fluid does not crystallize upon cooling below its ordering temperature. Instead, the microscopic relaxation times diverge so rapidly that, upon further cooling, equilibration eventually becomes impossible and glass formation occurs. Classic supercooled liquids exhibit specific identifiers including microscopic relaxation times diverging on a Vogel-Tammann-Fulcher (VTF) trajectory, a Havriliak-Negami (HN) form for the dielectric function, and a general Kohlrausch-Williams-Watts (KWW) form for time-domain relaxation. Recently, the pyrochlore Dy2Ti2O7 has become of interest because its frustrated magnetic interactions may, in theory, lead to highly exotic magnetic fluids. However, its true magnetic state at low temperatures has proven very difficult to identify unambiguously. Here we introduce high-precision, boundary-free magnetization transport techniques based upon toroidal geometries and gain a fundamentally new understanding of the time- and frequency-dependent magnetization dynamics of Dy2Ti2O7. We demonstrate a virtually universal HN form for the magnetic susceptibility, a general KWW form for the real-time magnetic relaxation, and a divergence of the microscopic magnetic relaxation rates with precisely the VTF trajectory. Low temperature Dy2Ti2O7 therefore exhibits the characteristics of a supercooled magnetic liquid; the consequent implication is that this translationally invariant lattice of strongly correlated spins is evolving towards an unprecedented magnetic glass state, perhaps due to many-body localization of spin.Comment: Version 2 updates: added legend for data in Figures 4A and 4B; corrected equation reference in caption for Figure 4

    Statistical Inference in Auditory Perception

    Get PDF
    The human auditory system effortlessly parses complex sensory inputs despite the ever-present randomness and uncertainty in real-world scenes. To achieve this, the brain tracks sounds as they evolve in time, collecting contextual information to construct an internal model of the external world for predicting future events. Previous work has shown the brain is sensitive to many predictable (and often complex) patterns in sequential sounds. However, real-world environments exhibit a broader spectrum of predictability, and moreover, the level of predictability is constantly in flux. How does the brain build robust internal representations of such stochastic and dynamic acoustic environments? This question is addressed through the lens of a computational model based in statistical inference. Embodying theories from Bayesian perception and predictive coding, the model posits the brain collects statistical estimates from sounds and maintains multiple hypotheses for the degree of context to include in predictive processes. As a potential computational solution for perception of complex and dynamic sounds, this model is used to connect sensory inputs with listeners' responses in a series of human behavioral and electroencephalography (EEG) experiments incorporating uncertainty. Experimental results point toward the underlying sufficient statistics collected by the brain, and the extension of these statistical representations to multiple dimensions is examined along spectral and spatial dimensions. The computational model guides interpretation of behavioral and neural responses, revealing multiplexed responses in the brain corresponding to different levels of predictive processing. In addition, the model is used to explain individual differences across listeners highlighted by uncertainty. The proposed computational model was developed based on first principles, and its usefulness is not limited to the experiments presented here. The model was used to replicate a range of previous findings in the literature, unifying them under a single framework. Moving forward, this general and flexible model can be used as a broad-ranging tool for studying the statistical inference processes behind auditory perception, overcoming the need to minimize uncertainty in perceptual experiments and pushing what was previously considered feasible for study in the laboratory towards what is typically encountered in the "messy" environments of everyday listening

    Tributes to Dean Karen H. Rothenberg

    Get PDF

    Magnetic Monopole Noise

    Full text link
    Magnetic monopoles are hypothetical elementary particles exhibiting quantized magnetic charge m0=±(h/ÎŒ0e)m_0=\pm(h/\mu_0e) and quantized magnetic flux Ί0=±h/e\Phi_0=\pm h/e. A classic proposal for detecting such magnetic charges is to measure the quantized jump in magnetic flux Ί\Phi threading the loop of a superconducting quantum interference device (SQUID) when a monopole passes through it. Naturally, with the theoretical discovery that a plasma of emergent magnetic charges should exist in several lanthanide-pyrochlore magnetic insulators, including Dy2_2Ti2_2O7_7, this SQUID technique was proposed for their direct detection. Experimentally, this has proven extremely challenging because of the high number density, and the generation-recombination (GR) fluctuations, of the monopole plasma. Recently, however, theoretical advances have allowed the spectral density of magnetic-flux noise SΊ(ω,T)S_{\Phi}(\omega,T) due to GR fluctuations of ±m∗\pm m_* magnetic charge pairs to be determined. These theories present a sequence of strikingly clear predictions for the magnetic-flux noise signature of emergent magnetic monopoles. Here we report development of a high-sensitivity, SQUID based flux-noise spectrometer, and consequent measurements of the frequency and temperature dependence of SΊ(ω,T)S_{\Phi}(\omega,T) for Dy2_2Ti2_2O7_7 samples. Virtually all the elements of SΊ(ω,T)S_{\Phi}(\omega,T) predicted for a magnetic monopole plasma, including the existence of intense magnetization noise and its characteristic frequency and temperature dependence, are detected directly. Moreover, comparisons of simulated and measured correlation functions CΊ(t)C_{\Phi}(t) of the magnetic-flux noise Ί(t)\Phi(t) imply that the motion of magnetic charges is strongly correlated because traversal of the same trajectory by two magnetic charges of same sign is forbidden

    Acoustic-Structure Interaction in Rocket Engines: Validation Testing

    Get PDF
    While analyzing a rocket engine component, it is often necessary to account for any effects that adjacent fluids (e.g., liquid fuels or oxidizers) might have on the structural dynamics of the component. To better characterize the fully coupled fluid-structure system responses, an analytical approach that models the system as a coupled expansion of rigid wall acoustic modes and in vacuo structural modes has been proposed. The present work seeks to experimentally validate this approach. To experimentally observe well-coupled system modes, the test article and fluid cavities are designed such that the uncoupled structural frequencies are comparable to the uncoupled acoustic frequencies. The test measures the natural frequencies, mode shapes, and forced response of cylindrical test articles in contact with fluid-filled cylindrical and/or annular cavities. The test article is excited with a stinger and the fluid-loaded response is acquired using a laser-doppler vibrometer. The experimentally determined fluid-loaded natural frequencies are compared directly to the results of the analytical model. Due to the geometric configuration of the test article, the analytical model is found to be valid for natural modes with circumferential wave numbers greater than four. In the case of these modes, the natural frequencies predicted by the analytical model demonstrate excellent agreement with the experimentally determined natural frequencies

    Antibiotic-resistant Escherichia Coli from Retail Poultry Meat with Different Antibiotic Use Claims

    Get PDF
    Background We sought to determine if the prevalence of antibiotic-resistant Escherichia coli differed across retail poultry products and among major production categories, including organic, “raised without antibiotics”, and conventional. Results We collected all available brands of retail chicken and turkey—including conventional, “raised without antibiotic”, and organic products—every two weeks from January to December 2012. In total, E. coli was recovered from 91% of 546 turkey products tested and 88% of 1367 chicken products tested. The proportion of samples contaminated with E. coli was similar across all three production categories. Resistance prevalence varied by meat type and was highest among E. coli isolates from turkey for the majority of antibiotics tested. In general, production category had little effect on resistance prevalence among E. coli isolates from chicken, although resistance to gentamicin and multidrug resistance did vary. In contrast, resistance prevalence was significantly higher for 6 of the antibiotics tested—and multidrug resistance—among isolates from conventional turkey products when compared to those labelled organic or “raised without antibiotics”. E. coli isolates from chicken varied strongly in resistance prevalence among different brands within each production category. Conclusion The high prevalence of resistance among E. coli isolates from conventionally-raised turkey meat suggests greater antimicrobial use in conventional turkey production as compared to “raised without antibiotics” and organic systems. However, among E. coli from chicken meat, resistance prevalence was more strongly linked to brand than to production category, which could be caused by brand-level differences during production and/or processing, including variations in antimicrobial use

    α-Tocopherols modify the membrane dipole potential leading to modulation of ligand binding by P-glycoprotein

    Get PDF
    Journal ArticleThis is the author accepted manuscript. The final version is available from ASBMB via the DOI in this record.α-Tocopherol (vitamin E) has attracted considerable attention as a potential protective or palliative agent. In vitro, its free radical-scavenging antioxidant action has been widely demonstrated. In vivo, however, vitamin E treatment exhibits negligible benefits against oxidative stress. α-Tocopherol influences lipid ordering within biological membranes and its derivatives have been suggested to inhibit the multi-drug efflux pump, P-glycoprotein (P-gp). This study employs the fluorescent membrane probe, 1-(3-sulfonatopropyl)-4-[ÎČ[2-(di-n-octylamino)-6-naphthyl]vinyl] pyridinium betaine, to investigate whether these effects are connected via influences on the membrane dipole potential (MDP), an intrinsic property of biological membranes previously demonstrated to modulate P-gp activity. α-Tocopherol and its non-free radical-scavenging succinate analog induced similar decreases in the MDP of phosphatidylcholine vesicles. α-Tocopherol succinate also reduced the MDP of T-lymphocytes, subsequently decreasing the binding affinity of saquinavir for P-gp. Additionally, α-tocopherol succinate demonstrated a preference for cholesterol-treated (membrane microdomain enriched) cells over membrane cholesterol-depleted cells. Microdomain disruption via cholesterol depletion decreased saquinavir's affinity for P-gp, potentially implicating these structures in the influence of α-tocopherol succinate on P-gp. This study provides evidence of a microdomain dipole potential-dependent mechanism by which α-tocopherol analogs influence P-gp activity. These findings have implications for the use of α-tocopherol derivatives for drug delivery across biological barriers

    Validation of Measured Damping Trends for Flight-Like Vehicle Panel/Equipment including a Range of Cable Harness Assemblies

    Get PDF
    This validation study examines the effect on vibroacoustic response resulting from the installation of cable bundles on a curved orthogrid panel. Of interest is the level of damping provided by the installation of the cable bundles and whether this damping could be potentially leveraged in launch vehicle design. The results of this test are compared with baseline acoustic response tests without cables. Damping estimates from the measured response data are made using a new software tool that leverages a finite element model of the panel in conjunction with advanced optimization techniques. While the full test series is not yet complete, the first configuration of cable bundles that was assessed effectively increased the viscous critical damping fraction of the system by as much as 0.02 in certain frequency ranges
    • 

    corecore