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Abstract

The human auditory system effortlessly parses complex sensory inputs despite the ever-

present randomness and uncertainty in real-world scenes. To achieve this, the brain

tracks sounds as they evolve in time, collecting contextual information to construct

an internal model of the external world for predicting future events. Previous work

has shown the brain is sensitive to many predictable (and often complex) patterns

in sequential sounds. However, real-world environments exhibit a broader spectrum

of predictability, and moreover, the level of predictability is constantly in flux. How

does the brain build robust internal representations of such stochastic and dynamic

acoustic environments?

This question is addressed through the lens of a computational model based in sta-

tistical inference. Embodying theories from Bayesian perception and predictive coding,

the model posits the brain collects statistical estimates from sounds and maintains

multiple hypotheses for the degree of context to include in predictive processes. As a

potential computational solution for perception of complex and dynamic sounds, this

model is used to connect sensory inputs with listeners’ responses in a series of human

behavioral and electroencephalography (EEG) experiments incorporating uncertainty.

Experimental results point toward the underlying sufficient statistics collected by the

brain, and the extension of these statistical representations to multiple dimensions is
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examined along spectral and spatial dimensions. The computational model guides

interpretation of behavioral and neural responses, revealing multiplexed responses

in the brain corresponding to different levels of predictive processing. In addition,

the model is used to explain individual differences across listeners highlighted by

uncertainty.

The proposed computational model was developed based on first principles, and

its usefulness is not limited to the experiments presented here. The model was used

to replicate a range of previous findings in the literature, unifying them under a single

framework. Moving forward, this general and flexible model can be used as a broad-

ranging tool for studying the statistical inference processes behind auditory perception,

overcoming the need to minimize uncertainty in perceptual experiments and pushing

what was previously considered feasible for study in the laboratory towards what is

typically encountered in the “messy” environments of everyday listening.
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Chapter 1

Introduction

Real-world listening environments are constantly in flux, giving rise to multiple layers

of uncertainty in auditory perception. Consider a forest or a city street: each scene

exhibits uncertainty due to a changing ensemble of sounds entering and exiting the

scene (e.g., animal calls, rustling trees, car engines, footsteps), compounded by the

uncertainty due to randomness in each individual sound source (in the pitch of a bird

call or in the path of a car or pedestrian). To interpret these complex surroundings,

the brain constantly sifts through all of this uncertainty, adapting to the dynamics of

the scene as it evolves over time.

Sound sources often unfold as a series of discrete events, and the brain sequentially

collects information from these sounds over time, gradually building up a mnemonic

representation of the underlying sound source. Predictive coding theory offers an ex-

planation for how the brain encodes past sensory information to tackle the uncertainty

in dynamic scenes. Broadly, the theory proposes the brain uses the recent context to

build an internal model of the external world, and this internal representation is used

to make predictions of future events [1–3]. These internal representations must be
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CHAPTER 1. INTRODUCTION

invariant to the randomness inherent in real-world environments, while simultaneously

allowing for flexibility to change with the dynamics of the acoustic scene. Extracting

robust representations from ongoing sound is automatic and effortless for the average

listener, but the underlying neural computations that accomplish this in everyday

listening are largely unknown.

Invariant properties of sound sources are typically referred to in the predictive

coding literature as regularities, and regularity extraction is the brain’s ability to access

these properties for use in auditory scene analysis [4, 5]. We differentiate between two

types of regularities in sequential sounds: deterministic regularities that describe static

characteristics or predictable patterns, and stochastic regularities that exist in the

continuum between perfectly predictable and completely random. The key distinction

lies in the presence or absence of uncertainty: with deterministic regularities, a new

sound can immediately be interpreted as conforming to or deviating from the regularity

with certainty, while for stochastic regularities this is not the case.

Consider, for example, the musical score in Fig 1-1, which contains various types

of regularities within this short excerpt: Fig 1-1a and b highlight deterministic

regularities, a single repeating note and a repeating sequence of notes, respectively;

Fig 1-1c highlights an example of a stochastic regularity, where there is a statistical

pattern that does not repeat exactly; and Fig 1-1d indicates a segment with stochastic

regularities that have more randomness and are less visually apparent. The brain is

remarkably sensitive to this range of predictability in music, and, although music is

highly structured compared to everyday scenes, this ability to extract and exploit

regularities in sequential sounds is used broadly in auditory perception in general.

Typically, studies in predictive coding manipulate listener expectations by em-

bedding regularities in sequences of sounds, and behavioral and neural responses are

2



CHAPTER 1. INTRODUCTION

Figure 1-1. Examples of different types of regularities embedded in a musical
excerpt. Deterministic regularities (a and b) are repeating patterns that can be interpreted
with certainty. Stochastic regularities (c and d) can only be described abstractly, and involve
some level of uncertainty. The regularity in c) comprises of near repetitions transposed
down by a single step, while the regularity in d) is less visually apparent.
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CHAPTER 1. INTRODUCTION

examined at violations of or changes in these regularities; the oddball paradigm is the

prototypical example of this in the literature [6, 7]. Previous studies have shown the

brain is sensitive to a vast array of deterministic regularities in sound sequences, from

simple repetitions to more complex patterns, for example: two interleaved determinis-

tic sequences [8], an abstract pattern within a single acoustic feature (“falling pitch

within tone-pairs”[9]) or one spanning multiple features (“the higher the pitch, the

louder the intensity”[10]). Studies using stochastic regularities have demonstrated that

listeners can discriminate between sound sequences based on statistical structure using

both behavioral and neural responses [11–13], that neural responses to deviance are

modulated by increases in uncertainty modulate [14–16], and that the brain is sensitive

to Markov structure within small sets of stimuli [17–19]. One possible mechanism

for how the brain represents stochastic regularities is through statistical estimates,

which entails extracting representative parameters from observed sensory cues [20, 21].

However, the nature and extent of statistics collected by the brain is an open question.

The aim of this dissertation is to investigate how the brain uses statistical repre-

sentations to interpret real-world sounds, where regularities exhibit a broad spectrum

of predictability. How does the brain build robust internal representations from such

stochastic and dynamic sensory inputs?

1.1 Approach

To investigate the predictive processing of dynamic stochastic sounds, we use a

combination of human behavioral and electroencephalography (EEG) experiments

alongside computational modeling. With the certainty afforded by deterministic

regularities, the connection between inputs (i.e., stimuli) and outputs (i.e., responses) is

straightforward; however, as uncertainty is introduced into the experimental paradigm,
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CHAPTER 1. INTRODUCTION

uncertainty unavoidably manifests in the experimental data collected. Stochastic

regularities render the connection between stimuli and response (especially neural

responses) very tenuous. This complexity necessitates the use of a computational

model to guide both the analysis and interpretation of behavioral and neural responses

to stochastic stimuli.

We developed a novel computational model that incorporates Bayesian theories

of predictive processing, incrementally predicting future sensory inputs given the

preceding context [5, 22–24]. From sequential inputs extracted from audio along

any continuous-valued acoustic or perceptual dimension (e.g., pitch, spatial location,

spectral centroid), the model outputs a probabilistic prediction of the next input

given its context. Just as in natural listening scenarios, the model does not assume

stationarity in the incoming sound; rather, it infers the amount of context from the

observed inputs. Additionally, the model outputs measures of prediction mismatch and

posterior beliefs that are easily interpretable in terms of predictive coding theory. We

use this model to compare different internal representations in predictive processing to

behavioral responses, and in turn use the model to guide analysis of neural responses.

We applied this model in a series of human experiments to examine predictive

processing of stochastic regularities in sequential sounds. Stimuli were sound sequences

exhibiting random fractal structure (also known as 1/f or power-law noise), which

is notable for its ecological relevance, as such structures have been found in music

[25], speech [26], and natural sounds [13]. We used a change detection paradigm,

tasking listeners with detecting changes in entropy of stimuli sequences. This paradigm

mirrors the challenges presented to the auditory system in everyday listening, where

the dynamics of emergent regularities must be inferred from sensory inputs.

The general experimental approach was as follows: We first established through
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CHAPTER 1. INTRODUCTION

behavior the extent of listeners’ ability to detect statistical structure embedded in

stochastic sounds, and we used the proposed computational model to test alternative

computational mechanisms that could give rise to these behaviors. We then used

the computational model to further interpret behavioral differences across individual

listeners and analyzed neural responses in similar experiments. We applied this

experimental approach first using stimuli that varied along a single dimension (pitch),

and we then expanded this approach to investigate the perception of sounds that

evolve along multiple dimensions simultaneously.

1.2 Contributions

The goal of this dissertation is to expand our understanding of the mechanisms behind

predictive processing of sequential auditory inputs in the presence of uncertainty. The

main contributions can be summarized as follows:

(i) The computational model provides a framework for probing specific components

of predictive processing. Rather than being developed for a specific paradigm or

domain of stimuli, the model was designed using first principles from predictive

coding theory. This gives the model broad applicability to interpret predictive

processing of sequential sounds, not only with the controlled stimuli typically

used in perceptual experiments, but in music and speech listening as well, all

under a unified computational framework. We demonstrate several uses of the

model—namely, to test alternative computational mechanisms giving rise to

individual behavioral and neural responses—but the usefulness of the model goes

beyond the experimental studies described in this dissertation. We additionally

used the model to replicate a range of existing results from the predictive coding

literature, and we explored the model’s flexibility in interpreting various real-
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CHAPTER 1. INTRODUCTION

world audio examples using different statistical representations along a variety

of input dimensions.

(ii) The extent to which the brain collects statistics from sequential sounds has

not been sufficiently explored in previous work. Aided by the model, human

behavioral and neural evidence establish that the brain collects higher-order

temporal dependencies between sounds as they unfold over time. Moreover, these

statistics are collected independently across multiple dimensions simultaneously.

(iii) The behavioral paradigm reveals individual differences in the perceptual system

that are amplified by uncertainty from statistical inference processes. Through

the lens of the model, variability across listeners was interpreted in terms of

individual perceptual and memory limitations that are not directly accessible

through listeners’ behavioral or neural responses.

(iv) Uncertainty also leads to trial-by-trial variability in response timing, which

is particularly problematic for time-locked analyses in EEG, where low SNR

necessitates many repetitions and precise temporal alignment across trials and

subjects to obtain meaningful results. To account for variability due to the

stochastic nature of each stimulus, EEG epochs are anchored according to model

outputs to reveal neural responses time-locked to the underlying predictive

processes.

1.3 Overview

The remainder of this dissertation is organized in three main chapters, each building

on the results from the previous chapters.

Chapter 2 presents a description of the proposed computational model in its
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CHAPTER 1. INTRODUCTION

entirety, without target application or experimental paradigm. This chapter includes

two demonstrations of the generality of the model: (i) illustrations of model outputs

in response to a variety of real-world audio examples to inspire deeper inquiry into

predictive processing of natural sounds, and (ii) replication of various results from the

predictive coding literature under the same computational framework.

In Chapter 3, an experimental paradigm for investigating statistical inference

along a single dimension is developed. Behavioral evidence for statistical processing is

presented, and the computational model from Chapter 2 is applied to determine the

internal statistical representation that best explains experimental results. The model

is then used to interpret neural responses.

In Chapter 4, the experimental paradigm from Chapter 3 is expanded to investigate

statistical inference along multiple dimensions (pitch, timbre, and spatial location).

Behavioral results demonstrate listeners’ ability to flexibly exploit and integrate

stochastic regularities across spectral and spatial dimensions, and the model is used

to compare many hypotheses for how this integration occurs. Neural responses reflect

different levels of predictive processing revealed by the model.

Finally, Chapter 5 synthesizes these results and offers potential avenues for future

work.
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Chapter 2

Modeling statistical inference of

sequential sounds

2.1 Introduction

Computational modeling has been used previously to expand the realm of investigation

in predictive coding. It has facilitated the interpretation of trial-by-trial variability

in listener responses [27], the link between individual spiking neurons and neural

responses to deviance measured at the scalp [28], and the recasting of various listening

phenomena, such as streaming and object perception, in terms of predictive coding

[22, 29, 30]. Computational modeling is particularly useful for studying statistical

processing in the brain, where stimulus-driven analyses are often constrained by

uncertainty in the stimulus and in the elicited response [14, 15, 31]. A common

limitation of these models is that they are designed for a particular experimental

paradigm. One notable exception is the IDyOM model, initially formulated for musical

expectation [32], which has been used to decode neural responses to music [33, 34] as

well as describe statistical learning of sound sequences in general [19, 35]. Additionally,
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CHAPTER 2. MODEL FOR STATISTICAL INFERENCE

the ARTSTREAM model, based on Gestalt principles of perception, incorporates

predictive coding into a broader framework for auditory scene analysis [36]. These

models, however, place various limitations on the domain of sensory inputs: the IDyOM

model operates on a discrete set of inputs (i.e., an alphabet), ignoring any ordering or

distance between elements, and the ARTSTREAM model assumes smoothness and

harmonicity. These provisions hinder the ability of these models to apply broadly

across different listening scenarios or explore the internal representations used in

predictive processing in general.

In this chapter, we present a computational model that provides a potential

algorithmic solution for the predictive processes employed in everyday listening.

It is agnostic to experimental paradigm or listening scenario and makes minimal

assumptions on the sensory input, instead offering a framework to compare different

assumptions and internal representations in the brain using experimental responses.

This model is grounded in theoretical accounts of predictive coding based in Bayesian

inference [37–39], and its mathematical underpinnings have previously been explored

in predictive-inference tasks using sequences of numbers [40, 41]. In lieu of modeling

neural mechanisms directly, we use neurally plausible computations to model the

cognitive processes that map sensory inputs to decision and action. This approach

favors simplicity in relating model inputs, outputs, and parameters to perceptual

processes, facilitating the exploration of underlying predictive mechanisms and their

connection to neural and behavior responses in a broad range of experimental studies

and realistic listening environments.

This chapter is organized as follows. First, we describe the model in its general

form, along with use cases relating the model to various experimental paradigms

employed in auditory research. Then, to demonstrate the flexibility of the model in

10



CHAPTER 2. MODEL FOR STATISTICAL INFERENCE

capturing different statistical structures in auditory inputs, we illustrate the predictive

processing of real-world audio examples along a variety of input dimensions. Finally,

we use the model to replicate and reinterpret existing results from the predictive

coding literature under a unified framework.

2.2 D-REX model

The Dynamic Regularity Extraction (D-REX) model is a computational model for

predictive processing of sequential sounds. This model has its roots in Bayesian

changepoint detection [42], which has previously been cast as a neurally plausible

framework for predictive processing of sensory inputs in the brain [40]. In this section,

we describe the model in general terms with ideas interspersed regarding possible

applications of the model to specific experimental paradigms. Source code for the

D-REX model is available online at http://www.github.com/jhu-lcap/drex-model,

as well as in Appendix III.

2.2.1 Model assumptions

The D-REX Model builds a predictive distribution at time t, Ψt, for the next input

xt+1 given all previously observed inputs:

Ψt = P(xt+1|x1:t)

where the input observations {xt}t∈Z+ are continuous-valued and sampled discretely

in time. The input sequence {xt} can be any acoustic or perceptual feature extracted

from the acoustic waveform (e.g., pitch, RMS energy, spectral spread, loudness, spatial

location). For example, the input to the model could be the sequence of pitches

extracted from a melody.

11
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CHAPTER 2. MODEL FOR STATISTICAL INFERENCE

The input sequence is assumed to be stochastic, drawn from a probability distribu-

tion f with unknown parameters θ, i.e., at each time t, xt ∼ fθ. For example, if f is a

univariate Gaussian distribution, θ would be the unknown mean and variance. While

the form of the distribution f is constant, the model does not assume stationarity

in this distribution, i.e., the parameters θ can change at unknown times. Fig 2-1a

shows an example input sequence generated from a Gaussian distribution with two

changes in the parameters θ (changes indicated by arrows). The D-REX model cur-

rently includes built-in support for the following distributions: Gaussian, Log-normal,

Gaussian mixture, and Poisson; note that this list is not exhaustive, and additional

distributions can be easily incorporated into the model code.

With Gaussian and Log-normal distributions, the distribution is additionally spec-

ified by D, the extent of temporal dependence between observations. For D > 1,

the model assumes successive observations are drawn from a joint distribution with

dimensionality D, and the form of the unknown parameters θ reflect this dependence.

For example, a multivariate Gaussian distribution with D = 2 assumes dependence

(and non-zero covariance) between adjacent observations, while with D = 1, observa-

tions are assumed to be statistically independent. As D increases, the model assumes

temporal dependence across wider spans of the input observations.

The choice of distribution f (and temporal dependence D) is crucial, as they

determine what statistical structures are captured by the model. When modeling

perceptual processes, the choice of distribution represents an implicit hypothesis that

the brain is sensitive to these same statistical structures or regularities, therefore it

can be used to compare different internal representations in the brain.
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CHAPTER 2. MODEL FOR STATISTICAL INFERENCE

Figure 2-1. Model description. a) The model uses multiple context hypotheses to
account for unknown changes in the observed sequence. Context-specific predictions P⃗ t

based on sufficient statistics Θ⃗t are combined, weighted by corresponding beliefs B⃗t, to
yield the predictive distribution Ψt for the next input xt+1. b) Upon observing xt+1, the
predictions and new input are used to update the statistics and beliefs, which are used
in turn to predict the next input, and so on. There are three principal outputs from the
model at each time: the surprisal of the newly observed input based on its prediction, the
predictive distribution for the next input, and the beliefs (or posterior distribution over
contexts). c) Outputs from the model for the example sequence in a). Note the predictive
distribution and beliefs reflect the underlying change in statistics inferred by the model.

2.2.2 Robust prediction of dynamic inputs

The model makes minimal assumptions on the input sequence, constraining only the

parametric form of the generating distribution but not the parameters themselves.

The challenge is then to make predictions of the next input xt+1 that are robust both

to unknown dynamics in the underlying generating distribution and to uncertainty

stemming from stochastic inputs.
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Sufficient statistics θ̂

The model represents past predictive information via sufficient statistics θ̂ collected

from the observed inputs. These sufficient statistics are estimates of the unknown

parameters θ and depend on the distribution choice f : for example, a Gaussian

distribution with D = 1 has sufficient statistics θ̂ comprised of the sample mean and

sample variance. The prediction from the model then depends on these statistical

estimates in lieu of the past observations themselves:

P(xt+1|x1:t) = P(xt+1|θ̂t) (2.1)

where θ̂t are the sufficient statistics for distribution f estimated from the previous

observations x1:t. Here, we refer to the extent of past observations used to estimate

statistics θ̂ as the context window for the prediction.

Multiple hypotheses for the unknown context

Because the dynamics of the underlying distribution are unknown, the choice of

context window impacts the quality of the prediction. For example, if the underlying

parameters θ have changed at any point in the observed sequence, collecting sufficient

statistics θ̂ over a context that includes all past observations will result in poor

statistical estimates of the current parameters. Without a priori knowledge of when

these changes occur, the model must infer the appropriate context window from the

data. To do this, the model makes predictions using multiple contexts simultaneously,

each referred to as a context hypothesis. Each hypothesis forms a potential parsing of

the past into observations that are relevant for the current prediction and those that

are not.

Let the set of context hypotheses be C⃗ = {ci}, i ∈ {1, . . . , M}, where ci is the

14
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leading boundary of the ith context and M is the total number of hypotheses. At each

time t, the model maintains a corresponding set of sufficient statistics collected over

each context, Θ⃗t = {θi,t}, and produces a set of predictions for the next observation

given each context, P⃗ t = {pi,t}. For the ith context hypothesis:

pi,t = P(xt+1|ci, xci:t)

= P(xt+1|θ̂i,t) (2.2)

where ci, θ̂i,t, and pi,t are the ith context boundary, the statistics collected over

that hypothesis, and the context-specific prediction based on these statistics, respec-

tively. Note that compared to Eq.Eq. (2.1), the context-specific prediction of xt+1

in Eq.Eq. (2.2) only depends on observations after the context boundary ci, because

observations before ci are independent of xt+1.

The model also maintains a set of context beliefs B⃗t = {bi,t}, each representing the

evidence for the ith context at time t given all previously observed inputs:

bi,t = P(ci|x1:t) (2.3)

These beliefs form a discrete posterior distribution over context hypotheses.

By default, the model produces a new context hypothesis at each time-step,

entertaining the possibility of a change at any time. This can be adjusted using the

input parameters of the model to represent prior knowledge about when changes

occur or to decrease computational cost of maintaining an exhaustive set of context

hypotheses.
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“Integrating out” the unknown context

To build the predictive distribution Ψt, the context-specific predictions pi,t are combined

across context hypotheses, weighted by their beliefs bi,t (see Fig 2-1a-right). We then

have the final predictive distribution at time t:

Ψt = P(xt+1|x1:t) =
M∑︂

i=1
P(xt+1, ci|x1:t)

=
M∑︂

i=1
P(xt+1|ci, xci:t)P(ci|x1:t)

=
M∑︂

i=1
pi,tbi,t (2.4)

This weighted summation “integrates out” the unknown context in a Bayesian fashion,

building a prediction for xt+1 that adapts to changes in the underlying statistics of

the observed sequence.

Fig 2-1a shows an illustration of how the model builds the prediction for xt1

given an example input sequence x1:t using three context hypotheses (with leading

boundaries c1, c2, c3 and statistics θ̂1,t, θ̂2,t, θ̂3,t). Context-specific predictions (p1,t,

p2,t, p3,t) show how the distributions differ by context, and the beliefs (b1,t, b2,t, b3,t)

show the relative evidence for the three context hypotheses at time t. In this example,

the model uses a Gaussian distribution with D = 1 (i.e., no temporal dependence).

Note that c1 is the only context that does not span an unknown change in distribution

parameters θ: its prediction p1,t more closely matches the statistics of the recently

observed inputs, and it has the highest belief b1,t. The final predictive distribution Ψt

is a weighted summation of the context-specific predictions.

Iterative processing

Fig 2-1b shows the main processing stages that the model undertakes in each time-step:

16



CHAPTER 2. MODEL FOR STATISTICAL INFERENCE

Observe. The new input xt+1 is observed.

Predict. The probability of xt+1 under each context hypothesis is computed using

the context-specific predictive distributions P⃗ t (see Eq Eq. (2.2)).

Update. Sufficient statistics θ⃗t are updated with the newly observed input [43], and

beliefs B⃗t are updated using the predictive probabilities [42].

The updated statistics and beliefs, Θ⃗t+1 and B⃗t+1, are used in turn to process the

subsequent input xt+2, and so on.

2.2.3 Model outputs

There are three main outputs from the model, as shown in Fig 2-1b, which can each

be used to relate the model to behavioral and neural responses in various experimental

paradigms. Importantly, the model is causal, so all outputs depend only on previously

observed inputs.

(i) St+1 is the surprisal of the input xt+1. After xt+1 has been observed, the

surprisal St+1 indicates the mismatch between this observation and its predictive

probability:

St+1 = − logP(xt+1|x1:t) (2.5)

where the probability is computed from Eq Eq. (2.4). Observations with a

low probability of occurring have high surprisal, whereas those with a high

probability have low surprisal, and observations with probability 1 (i.e., com-

pletely predictable) have zero surprisal. The term surprisal used here is related

to information content, or the information gained when a random variable is

observed [44].
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Surprisal is analogous to a probabilistic deviance response. In particular, surprisal

can be related to the Mismatch Negativity (MMN) in electrophysiology responses

(for comparisons of D-REX surprisal to MMN results in the literature, see [45]).

Surprisal can also be related to discrimination paradigms where the contrastive

property in the stimulus relates to predictability. For example, average surprisal

can be used to discriminate between sequences with different entropy [11, 35].

(ii) Ψt+1 is the predictive distribution of the next observation xt+2, or the

weighted sum of context-specific predictions (see Eq Eq. (2.4)). As a prob-

ability distribution, quantities such as the expected value (i.e., the predicted

value of the next input), the entropy, or the precision can be derived from Ψt+1

and used to connect neural event-related or oscillatory responses to specific

aspects of prediction [46–48]. For example, the predictive distribution can be

used to examine the evolution of precision-weighted EEG responses in the brain

[35].

(iii) B⃗t+1, the beliefs, forms the posterior probability distribution over context

hypotheses (see Eq Eq. (2.3)). The beliefs represent the relative evidence across

context hypotheses. Similar to the predictive distribution, measures can be

derived from the beliefs to relate to behavioral and neural respones, e.g., the

expected context at time t: E[ci] = ∑︁M
i=1 cibi,t.

Beliefs can be particularly useful in change detection paradigms. For example,

the beliefs can be used to compute the probability at least one change has

occurred in the observed sequence, or equivalently, the probability that the

context boundary occurs after the beginning of the observed sequence:

P(Change) = P(ci > 1|x1:t+1) =
∑︂

i: ci>1
bi,t+1
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Or, the beliefs can be used to define a moment-by-moment measure of how much

the beliefs shift at each time to adapt to changing statistics:

δt = DJS(B⃗t || B⃗t+1)

where DJS(·||·) is the Jensen-Shannon divergence, or the distance, between beliefs

before and after observing xt+1.

To relate model outputs to behavioral responses, a threshold can be applied to

any of these measures of change to acquire a binary change-detection decision

from the model. This decision response can then be used to fit the model to

listener behavior (for example, see [49]). In this case, the threshold represents

an additional parameter of the model, where decreasing the threshold results in

increased sensitivity in the model to change, and vice-versa.

Fig 2-1c displays model outputs for the example sequence in Fig 2-1a as they

evolve over time. Note this same visual representation of the model outputs will be

used in the Examples section below. The predictive distribution (Fig 2-1c-top) adapts

to changes in the input observations. These correspond to shifts in the context beliefs

(Fig 2-1c-middle), displayed as vertical slices at each time t, with color corresponding

to the log-probability of each context boundary ci on the vertical axis. For example,

interpreting the vertical slice at t = 60 from the bottom-up, beliefs indicate very low

probability for context hypotheses with ci < 30, a peak around ci = 30, and medium

probability for ci > 30, indicating the context hypothesis with ci = 30 has the highest

belief at time t = 60 given previous observations (note this matches the ground truth

for the most recent change in the input sequence). The diagonal boundary reflects

the causal nature of the model: at each time t, there are only context hypotheses
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with boundaries ci in the past (i.e., ci ≤ t). The surprisal (2-1c-bottom) shows the

momentary mismatch of every input after it has been observed. Note that higher

surprisal corresponds with observations that fall farther outside of the predictive

distribution in the top plot.

The use-cases of the D-REX model mentioned above are not exhaustive, nor are

the three principal outputs of the model—surprisal, prediction, beliefs—the extent

of possible responses produced by the model. They are presented here as the basic

building blocks of the model’s response which can be used to derive application-specific

outputs to interpret a variety of experimental paradigms and listening tasks related

to predictive processing.

2.2.4 Model parameters

The parameters of the D-REX model (not to be confused with the unknown distribu-

tional parameters θ) have straightforward interpretations in terms of prior knowledge,

individual differences in neural resources, and the underlying computational implica-

tions for predictive algorithms in the brain. These parameters give the D-REX model

flexibility to serve multiple purposes, from asking specific questions about perceptual

processes to tailoring the model to fit behavior of individual subjects.

Priors: π

The priors π are the initial statistical estimates for a new context hypothesis and

take the same form as the sufficient statistics θ̂. These priors represent any “prior

knowledge” in the model regarding the statistics of the input sequence after a change

before any new inputs have been observed. In most cases, the priors can be set to

sufficient statistics estimated from exposure stimuli with the same statistical properties

as the target stimuli. Or the priors can be used to test hypotheses about how prior
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knowledge affects predictions: for example, how different long-term prior experience

affects the listener responses to the same inputs, or how trial-to-trial learning evolves

over the course of an experiment.

Hazard rate: ht

The hazard rate ht is the probability of a change in underlying statistics occurring

at time t before any inputs after time t have been observed. If the hazard rate ht

is greater than zero, a new context hypothesis is created at time t with belief equal

to ht, i.e., b1,t = ht. The larger ht is, the more volatility and change is assumed in

the underlying statistics of input. The hazard rate can be constant, i.e., changes in

the unknown parameters θ are equally probable at all times, or it can vary over time,

encompassing prior knowledge about when changes are expected to occur in the input

sequence.

Perceptual parameters: M , N

Previous studies have shown that human listeners do not operate as ideal Bayesian

Observers [50]. Two perceptual parameters represent neurally plausible constraints to

predictive processing in the model:

Memory M is the total number of context hypotheses and represents working

memory capacity constraints in the brain [51, 52]. If context hypotheses are

created at each time-step (i.e., if ht > 0, ∀t), M also represents the maximum

context window used by the model to generate predictions, or equivalently, the

maximum sample size used to estimate statistics θ̂.

Observation noise N sets a lower bound on prediction uncertainty, representing

limitations in perceptual fidelity along the input dimension [53, 54]. Observation

noise is equivalent to adding independent Gaussian noise to the observed input

21



CHAPTER 2. MODEL FOR STATISTICAL INFERENCE

with zero-mean and constant variance N , which has the effect of both increasing

uncertainty of the prediction and decreasing precision of the sufficient statistics

θ̂.

Both of these perceptual parameters affect predictive processing and can be used

to fit the model to individual listener behavior by defining a model response analogous

to the listener response and performing a parameter search to find the parameters

that best replicate listener response. An example of this can be found in [49].

2.3 Examples from real-world audio

To illustrate the flexibility of the D-REX model, in this section we show model outputs

for example inputs taken from real-world audio clips. Audio examples were selected to

represent a range of real-world sound sources from music, speech, and environmental

sounds. Across the examples, we demonstrate the model’s capacity to capture a variety

of statistical structures along an assortment of input dimensions related to spectral,

spatial, and temporal processing.

Each panel in Fig 2-2 and 2-3 shows the input sequence (top, in black) with the

three model outputs as they evolve over time: predictive distribution (top, in blue),

beliefs (middle), and surprisal (bottom). The input feature and distribution used in

the model are indicated above each example with annotations of audio events therein.

All audio clips were downloaded from publicly available sources, and input sequences

for the model were extracted from the acoustic waveform using custom MATLAB

scripts.

In each example, an “ideal-observer” model was used with zero observation noise

and infinite memory parameters. The distributional choice f (and temporal dependence

D, when applicable) was chosen based on the input dimension and/or to illustrate
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Figure 2-2. Model outputs for example inputs from real-world audio clips. Each
panel displays the model predictive distribution (top), context beliefs (middle), and surprisal
(bottom) over time, with the input sequence overlaid on the predictive distribution (top,
in black). The input dimension (feature), distributional choice in the model, and audio
event annotation are indicated above. Includes examples employing Gaussian and Gaussian
mixture distributions.

the impact of this choice on the outputs from the model. Examples are organized

according to the input dimension.

Spatial location. Fig 2-2a and b show model outputs from a binaural recording of

a buzzing bee flying around the head. As an acoustic surrogate for spatial location, the

input dimension used here is the Interaural Level Difference (ILD-dB), the dB-ratio

of root-mean-squared (RMS) energy between the left and right channels in 50 ms

analysis frames. Both Fig 2-2a and b use a Gaussian distribution in the model, but
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differ in the temporal dependence D. In Fig 2-2a, the model assumes no temporal

dependence (D = 1), and statistical changes are apparent in the prediction and in

the beliefs as the input deviates from the running mean, which can also be seen in

peaks in surprisal. In this case, the model interprets the input as a series of segments

with static mean and variance; the clear “staircase” image in the beliefs shows this

segmentation.

In contrast, when temporal dependence is incorporated as in 2-2b (D = 2), no

changes are apparent. Here, the model collects covariances between adjacent inputs,

tracking the trajectory of the sequence along the input dimension. Note that the

precision of the prediction is much higher compared to Fig 2-2a. This offers an

alternative interpretation of the same input sequence.

Pitch. Fig 2-2c and d show model outputs from two Bach melodies. Pitch was

extracted from source MIDI files using the MATLAB-MIDI toolbox1. Pitches are

represented in semi-tones to reflect logarithmic tonotopy in the auditory system. Fig

2-2c uses a Gaussian distribution again but with much longer temporal dependence

(D = 10). The large covariance structure collected by the model is sensitive to the

arpeggiated melody in the first half of the input sequence, as can be seen in the

coalescing of the prediction around the input, as well as in the low surprisal. The

model then adapts to the change in melody motif around t = 20. Note that because

the model uses statistical representations, exact repetitions were not necessary to

capture the regularity in the first half of the sequence.

In Fig 2-2d, the model uses a Gaussian mixture model (GMM) to represent the

pitches of another Bach melody. While this distribution does not have temporal

dependence, it is more flexible for representing arbitrary distributions in the input.
1https://github.com/kts/matlab-midi
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Figure 2-3. Model outputs for example inputs from real-world audio clips, con-
tinued. Similar layout to Fig 2-2. Includes examples employing log-normal and Poisson
distributions.

The prediction captures the multimodal nature of the input and adapts gradually to

changes in the statistics, as can be seen by the dispersal of beliefs across multiple

contexts. Note that the peaks in surprisal coincide with lower-probability observations

in the high component of the sequence, but the overall surprisal trend is downward,

as the model builds better estimates of the underlying statistics.

Spectral profile. Fig 2-2e and f use Gaussian distributions to process two spectral

features from orchestral performances: spread and centroid. These spectral features

were derived from the cochleogram, a physiologically-inspired spectrogram computed

from the acoustic waveform as part of the NSL toolbox2, using 50 ms analysis frames.

With both features, changes in orchestration (i.e., which instruments are playing

at each moment) are reflected in the beliefs from the model. These two examples

demonstrate how the model can be used to track timbre in the acoustic input.

Energy. Fig 2-3a and b apply a log-normal distribution to the RMS energy measured

in frames from two everyday recordings. RMS energy was computed directly from the

acoustic waveform in 50 ms analysis frames. In Fig 2-3a, peaks in surprisal correspond
2http://nsl.isr.umd.edu/downloads.html
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with dog barks and a whistle. Note that the surprisal of the first dog bark is higher

than the later events, a consequence of the statistics of the preceding context. In Fig

2-3b, the beliefs capture turn-taking in conversational speech between a male speaker

and group laughter.

Onset timing. The final example in Fig 2-3c applies the model to a temporal

dimension: the timing of transient onsets extracted from a recording of a marching

band drum line. Transient onsets were extracted by finding peaks in the mean power

across high-frequency channels from the cochleogram (center frequency> 1760 Hz)

using 16 ms analysis frames. The model assumes a Poisson distribution in the input.

Note the change in rhythm in the input sequence is reflected in the beliefs, and higher

surprisal indicates moments when the rate of transients deviates from the preceding

statistics.

These examples illustrate the flexibility of the model to build predictions from a

variety of auditory inputs along various dimensions. Importantly, we do not prescribe

a particular set of statistics in the model. Rather, the flexibility to utilize different

statistics offers an opportunity to compare various statistical representations to see

which best explains experimental results.

2.4 Replication of results from the literature

To demonstrate the model’s applicability to existing experimental results in predictive

coding, we collected surprisal responses from the D-REX model to stimuli found in the

literature. Stimuli range in predictability to show the capacity of the model to capture

a variety of phenomena under a single framework. Using a Gaussian distribution with

different levels of temporal dependence (D), we can ascertain the statistics that are

sufficient—i.e., the “simplest explanation”—for responses observed in the brain.
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Figure 2-4. Replication of neural results. Results from the literature (left) are
compared to surprisal responses from the D-REX model (right) to the same stimuli
(above): a) [6], b) [55], c) [56], d) [57]. Arrows indicate replicated trends. Surprisal axis
is occasionally inverted to facilitate visual comparison. Experimental figures reproduced
with permission from the publishers. Data in b) plotted from published table.

In Figs 2-4 and 2-5, neural results directly from the literature are presented

alongside model results for comparison (e.g., MMN amplitude vs. surprisal), with

example stimuli shown above each result. Trends shared between neural and model

results are indicated by red arrows. To facilitate visual comparison, the surprisal

axis is occasionally inverted to align higher surprisal in the model results with lower

predictability in the neural results. Figures from the literature are reproduced in their

original form, unless otherwise noted.
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Oddball. Dating back to 1978, Näätänen and colleagues have used the oddball

paradigm to elicit neural markers of deviance from a detected regularity [7, 58].

The paradigm includes a standard stimulus exhibiting some regularity and deviant

stimuli breaking the regularity; if the brain is sensitive to the regularity, the mismatch

negativity (MMN) appears around 100–200 ms after onset in the deviant’s Event-

Related Potential (ERP) response relative to the standard. This negativity increases

with frequency distance between the deviant and standard [6]. The D-REX model

with D = 1, or marginal statistics, similarly shows an increase in surprisal to the

deviant as frequency distance increases (see Fig 2-4a).

Roving oddball. The oddball paradigm has been extended using a standard that

changes over time, where each deviant becomes the new standard. As the number

of standards increases, ERP response to the standard increases in the MMN window

(80–180 ms), while response to the deviant stay relatively the same [55]; similarly, as

the number of standards increases, model surprisal with D = 1 decreases (F2,147 =

108.1, p < 0.0001), while surprisal to deviants stays the same (F2,147 = 1.18, p > 0.1)

(see Fig 2-4b3, surprisal axis flipped for visual comparison).

Pattern oddball. Tone-patterns can also serve as standards in the oddball paradigm.

In [56], an MMN response to the first tone of the deviant pattern (BBAA) relative to

the first tone of the standard pattern (AABB) indicates the brain is sensitive to the

4-tone pattern. In the model’s surprisal response, this is replicated with dimensionality

D > 2 (t74 = 15.11, p < 0.0001), indicating the minimal statistics necessary to detect

the deviant is actually over a shorter window than the pattern itself; deviance can be

detected by the entire 4-tone pattern or by three repetitions of the same tone (see Fig

2-4c).
3Neural results from literature reproduced from data published in a table.

28



CHAPTER 2. MODEL FOR STATISTICAL INFERENCE

Figure 2-5. Replication of neural results from the literature, continued. a) [15],
b) [14], c) and d) [35]. Arrows indicate replicated effects. Surprisal axis is occasionally
inverted to facilitate visual comparison. Experimental figures reproduced with permission
from the publishers. Data in a) plotted from published table.
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High- & low-predictability oddball. Top-down attentional affects have been

measured in the MMN response. In [57], the MMN response was measured in two

conditions: a high-predictability condition where the number of standards preceding a

deviant was usually 4 (AAAAB), and a low-predictability condition where the number

of standards was uniformly distributed between 2 and 6. Listeners were tasked with

detecting every deviant (B). ERP evidence shows a significant MMN response to

deviants but no difference in MMN magnitude between predictability conditions; this

null result is replicated by differential surprisal between deviant and standard from

the model with D = 1 collecting only marginal statistics (t23 = 1.27, p > 0.1) (see Fig

2-4d).

By contrast, a model with D = 6 collects temporal covariances that cover the

entire AAAAB pattern and no longer finds the final B tone “surprising” (see Fig

2-4d-right). This mirrors a similar study where listeners were tasked with listening for

the entire pattern and exhibited no MMN response to the deviant tone [59]. These

top-down effects can be described in terms of the statistics being collected—when

attending to the B tone only, listeners collect marginal statistics; when attending to

the entire AAAAB pattern, listeners collect long-range temporal statistics.

Statistical oddball biased toward large or small changes. Context effects

have been observed in the MMN response by manipulating the relative probabilities

of deviants, biasing them toward small- or large-change deviants [15]. Deviant effects

moduled by statistical context are observed in N1 amplitude: magnitude increases with

deviant change and is augmented by the small-change context, where large changes

are less probable. An ANOVA applied to model surprisal (with D = 1) shows the

same significant effects for spectral change (F2,477 = 668.66, p < 0.0001) and statistical
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context (F1,477 = 221.14, p < 0.0001) (see Fig 2-5a4).

Gaussian sequences differing in variance. Context effects have also been ob-

served using random stimuli drawn from a Gaussian distribution with different variances

[14]. Responses to deviants (presented 2 octaves above the mean) show a negative

peak around 120 ms that is larger for narrow relative to broad statistical context.

Additionally, there is evidence of adaptation effects in the broad context when com-

paring deviant responses based on the number of preceding tones (Na) falling outside

a frequency region (∆Fa) (see [14] for details). The model with D = 1 replicates these

results (see Fig 2-5b).

Regular vs. random sequences. Repeating patterns are another class of stimuli

used to explore regularity extraction in the brain. In particular, RMS power in

MEG has been shown to increase with decreasing entropy in the stimulus [35]: RMS

power increases gradually when the stimulus transitions from random to repeating

pattern (RAND-REG), while RMS power decreases abruptly for the opposite transition

(REG-RAND). The model replicates both of these phenomena in the time-course

of surprisal, with D greater than the pattern length (see Fig 2-5c). Additionally,

the model replicates effects of pattern length on RMS power [35], again reflecting

differences in entropy (see Fig 2-5d).

2.5 Discussion

The D-REX model is a functional instantiation of existing theoretical formulations

for predictive processing and object formation in perception, where sound sources

are represented probabilistically and sensory inputs are incorporated into the brain’s

internal representation of the world [5, 22, 24, 60, 61]. The composition of the D-REX
4Neural results from literature reproduced from data published in a table.
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model aligns with previous literature regarding the underlying computations behind

predictive processing: the brain builds statistical representations estimated from

sounds over time [20, 21, 62, 63], and the brain maintains multiple hypotheses for

how much of the past is relevant to the present moment [64, 65]. These claims are

represented explicitly in the model by statistical estimates collected over different

time-windows, each of which gives a prediction for future inputs. Prediction errors

are then used to update probabilistic beliefs in each context, weighting contexts

proportionally by their evidence. This competition between concurrent hypotheses for

the relevant context is crucial for robust interpretation with dynamics and uncertainty

in the sensory input.

By no means a complete picture of predictive coding in auditory perception, the D-

REX model is a flexible computational framework offering several footholds from which

facets of predictive processing can be explored. By connecting the model’s outputs to

experimental responses, the model can act as a “simulated” listener undergoing the

same experimental tasks as human listeners. The internal components of the model

can then be tinkered with and tuned to explore which configurations of the model

give rise to responses that match listener responses. This approach can be used to

investigate many open questions in predictive processing in audition.

The model can be used to investigate the nature of the internal statistical repre-

sentation employed by the brain. What statistics are collected by the brain? How do

these statistics differ between perceptual dimensions? To what extent are dependencies

over time and across dimensions represented? How do statistical representations vary

with listeners’ attentional state or long-term experience? These questions can be ad-

dressed explicitly using the statistical estimates employed in the model: with existing

experimental results, the model can be used with different statistical representations
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to examine which best replicates listener responses, or the model can be used to drive

new investigations specifically designed to tease apart the statistical representation by

providing alternative hypotheses for experimental results under certain statistics.

The model can also be used to investigate how context and experience shape

perception at different time-scales. At short-term scales, the context windows of

the model can be used to ask questions about the granularity of the statistical

representation in memory, for example, to set an upper bound on the maximum

context window used by listeners, or to find the minimum set of contexts that can

replicate listener behavior and whether this is consistent across stimuli with different

levels of complexity. At longer time-scales, the priors of the model can be used to

represent different prior expectations of the listener learned from previous exposure,

where model responses using different priors could be used to investigate how prior

experience affects predictions or how listener responses reflect learning over the course

of an experiment. Again, these questions can be approached by using the model to

give targeted hypotheses for experimental outcomes.

As a surrogate for the computational processes behind predictive processing in

individual listeners, the model can be used to explain differences in behavioral or

neural responses across listeners. In addition to examining effects of representation

and experience on individual perception mentioned above, the perceptual parameters

of the model (memory and observation noise) can provide additional insight into how

known constraints on neural resources manifest in subject-to-subject variability in

behavioral and neural responses. Currently, the connection between these modeling

parameters and their neural counterparts is plausible, and early evidence supports this

connection (see Appendix II for preliminary results exploring the model’s predictions

of working memory capacity). Future investigation into the behavioral and neural
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consequences of the perceptual parameters can add interpretive heft to the model.

An additional strength of the model lies in its ability to combat the noise that

invariably creeps into experimental paradigms incorporating uncertainty. Behavioral

and neural responses to stochastic stimuli are themselves stochastic, and trial-to-trial

variability can cloud results, especially in neural responses where precise time-locking

is often a prerequisite to any event-related analysis. The model can be used to reduce

jitter by aligning neural responses to events derived from model response to the same

stimulus. Neural responses can then be correlated with specific aspects of predictive

processing (e.g., prediction error, precision, evidence accumulation). The model

provides an avenue to take findings established in more tightly-controlled experiments,

and see if they hold in more complex settings where well-defined events for time-locking

are less apparent.

Finally, the model is modular and extendable. We demonstrated the capacity of

the model to capture many possible statistical representations along different sensory

dimensions in real-world audio examples, but the input dimensions and probability

distributions explored here are not exhaustive. New probability distributions can easily

be included in the D-REX model, and the model can be applied along any dimension

in the acoustic input. Moreover, the modeling framework can be expanded in other

ways to broaden its application. As currently implemented, the model operates at a

single level in the sensory input and along a single time-scale, but it could be layered to

build heirarchical predictions at different levels of abstraction or multiple time-scales.

In addition, while the model was designed for audition, the same sequential prediction

computations could be applied in and across other sensory modalities. Future work

can also address how the predictive algorithms identified by the model could be

implemented in neural circuits.
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Beyond retrospective interpretation of existing results, the D-REX model can be

used to guide future experiments, probing the temporal processing of complex sounds.

As a flexible and general computational model for predictive coding, it can be used

as a tool to pursue a deeper understanding of the computational mechanisms behind

predictive coding of rich, dynamic sounds in a variety of listening scenarios under

a single unifying framework. The D-REX model can be used to push the boundary

of what is considered feasible for study in the laboratory towards the complexity

encountered in everyday listening.
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Chapter 3

Statistical inference

along a single dimension

3.1 Introduction

In this chapter, we employ the Dynamic Regularity Extraction (D-REX) model

described in Section 2 to model Bayesian inference used by the auditory system to

track sensory statistics in pitch. This computational framework, alongside human

behavioral and electroencephalography (EEG) experiments, allows us to directly test

alternative hypotheses regarding the extent to which auditory statistical information

is represented in memory and the optimality of statistical inference in the brain.

The nature of the statistical representation collected by the brain has not been fully

explored in the literature. Previous studies have focused on the marginal statistics

of tones within a sequence, showing that the brain is sensitive to changes in mean

and variance [14, 16]. We refer to these as lower-order statistics, describing sounds

independent of their context. Here, we investigate whether the brain collects higher-
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order statistics about the dependencies between sounds over time; namely, we examine

how the brain gathers information about the temporal covariance structure in a

stochastic sequence of sounds. We use melody stimuli with pitches based on random

fractals, which exhibit long-range dependencies and cannot be described solely by

lower-order statistics. We specifically use random fractals because of their ecological

relevance: previous work has demonstrated the presence of random fractals in music

[25], speech [26], and natural sounds [13] and shown the brain is sensitive to the

amount of randomness, or entropy, in random fractal melodies [11, 12].

Change detection experiments are well-suited for investigating regularity extraction,

where the task is to detect deviation from an established regularity in a sequence of

sounds. A detection can be reported behaviorally or recorded in the neural response;

for example, in EEG studies the Mismatch Negativity (MMN) is commonly used

to index deviance detection in the brain. A correct detection indicates the brain

is sensitive to the tested regularity, for a change response is necessarily preceded

by knowledge of what is being changed. Compared to discrimination, the change

detection paradigm more closely mirrors how the brain processes sounds in the real

world, where boundaries between sound sources are not known a priori, but must be

inferred from changes in ongoing sound.

The mechanisms needed for change detection may differ depending on the type

of regularity. With deterministic regularities, the brain can explicitly test whether

each incoming sound deviates from the extracted pattern or not with near certainty.

Deviation from a stochastic regularity, on the other hand, emerges gradually as

evidence is accumulated over time, causing a delay in the perceived moment of change

proportional to the amount of evidence needed to detect the change. This uncertainty

unavoidably introduces variability in perception across trials and across subjects,
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which is particularly problematic for time-locked analyses such as in EEG, where low

SNR necessitates many repetitions and precise temporal alignment across trials and

subjects to get meaningful results. To account for this variability and facilitate the

study of stochastic regularities in change detection, we use the D-REX model as a

perceptual model of the mechanisms for extracting and using regularities in a changing

scene to guide our analysis.

The perceptual parameters of the D-REX model that represent neural resource

limitations (i.e., finite working memory and observation noise) provide constraints on

performance that are valuable to interpret sub-optimal detection performance and

variability across listeners’ behavior. By fitting the model to human behavior from

a series of change detection experiments, we explore questions regarding auditory

stochastic regularity extraction: Which statistics are sufficient to explain human

behavior? How do the perceptual parameters of the model account for differences in

behavior across subjects? Finally, we use the model to guide analysis of EEG data,

revealing effects that would be otherwise hidden using conventional EEG analyses.

3.2 Methods

3.2.1 Participants

All participants reported no history of hearing loss or neurological problems. Par-

ticipants gave informed consent prior to the experiment and were paid for their

participation. All procedures were approved by the Johns Hopkins Institutional

Review Board (IRB).

In Experiment 1, ten participants (9 Female) were recruited from an undergraduate

population (mean age: 18.7 years). In Experiment 1b, 21 participants (14 Female) were
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recruited from an undergraduate population (mean age: 20.1 years). In Experiment 2,

ten participants (6 Female) were recruited from an undergraduate population (mean

age: 18.7 years). Finally, in Experiment 3 (EEG), 14 participants were recruited, and

six participants were excluded from EEG analysis because behavioral performance

was near chance (d′ < 0.5). Out of the remaining eight subjects, six were female, and

the mean age was 20 years.

3.2.2 Stimuli

Stimuli in Experiments 1–2 were pure-tone melodies with tone frequencies determined

by random fractals. Random fractals are stochastic processes with spectrum inversely

proportional to frequency and with spectral slope β (1/fβ). β parameterizes the

entropy of the random fractal: as β decreases entropy increases, with β = 0 yielding

a white-noise spectrum and the highest entropy. Four levels of entropy were used

to create the stimuli, corresponding to β = 0, 1.5, 2, 2.5. Random fractals were

generated by repeatedly applying the inverse Fourier transform to the 1/fβ spectrum

with random phase, yielding many unique instances. These random fractals were

standardized to remove any differences in mean and variance, then quantized and

mapped to 35 frequencies in a quasi-semitone scale (15 frequencies/octave) centered on

330 Hz (range: 150–724 Hz). Melodies were synthesized using pure tones with 150ms

duration and 10ms ramped onset and offset (squared cosine). Inter-onset interval

between tones was 175ms.

In Experiments 1 and 1b, all melody stimuli had a length of 60 tones. Stimuli

with changes in entropy (“change trials”) were composed of two equal-length melodies

with different entropy, one with the highest entropy (β = 0) and one with a lower

entropy, resulting in three degrees of change (∆β = 1.5, 2, 2.5). Both increasing- and

decreasing-entropy trials (referred to as INCR and DECR, respectively) were included,
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resulting in six change conditions, as well as control trials with constant entropy at

each entropy levels. There were 150 trials in total, with 15 trials per condition.

In Experiment 2, stimuli were similar to those in Experiment 1 with an additional

manipulation of melody length. Along with the same change degree and direction

conditions, there were three length conditions (20, 40, and 60 tones) with the change

always occurring in the midpoint of the melody. For each of the 18 change conditions

(3 ∆β x 2 direction x 3 length) and each of the 12 control conditions (4 β x 3 length),

there were 8 trials, for a total of 240 trials.

In Experiment 3, stimuli were based on an alternative parameterization of entropy

using first-order Markov chains, which provided greater control over the distributions

used to generate the melodies. Specifically, this allowed us to exclude tone repetitions

from the melody stimuli to prevent any correlates in EEG due simply to repetition.

Because none of the analyses or results are predicated on properties exclusive to

random fractals, and both types of stochastic stimuli are perceptually similar, we treat

both stimuli identically.

Melody stimuli were composed of 50 pure-tones with pitches sampled from 11

frequencies on a semitone scale (range: 247–440 Hz). For each melody, the first tone

frequency was sampled uniformly from all 11 frequencies. Subsequent tone frequencies

were drawn from a probability distribution based on a modified logistic curve centered

on the previous observation with entropy parameterized by the logistic slope k,

Pk(xt|xt−1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, xt = xt−1

A/(1 + e−k|xt−xt−1|), otherwise

where xt and xt−1 are the current and former tone frequencies (in semitones) and A

is a normalization constant. As k increases, this distribution becomes more biased
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towards smaller frequency steps and lower entropy, and it has maximum entropy

at k = 0, a uniform distribution across the 10 frequencies (excluding the previous

frequency). High-entropy sequences and low-entropy sequences were generated with

k = 0 and k = 0.7, respectively. For change trials, k transitioned smoothly between

the two extremes in the middle 10 tones of the melody (tones 21–30) to avoid obvious

outliers from an abrupt change in the distribution.

In Experiment 3, there were 150 melody trials in this experiment: 50 trials for each

change direction (INCR and DECR), and 25 control trials per entropy level (LOW

and HIGH). Tones were 125 ms in duration and presented with inter-onset interval of

160 ms.

3.2.3 Procedure

For all experiments, stimuli were presented in randomized order by subject with

self-paced breaks between blocks. During each melody trial, listeners were instructed

to listen for a change in the melody. Feedback was given after each response in order

to guard against task misunderstanding and ensure listeners had as much information

as possible to perform the task well.

Listeners were not given explicit instructions about what they were listening for,

but rather learned the task implicitly over the course of a training block prior to

testing. Incorrect responses in the training block caused the same stimulus to be

replayed with feedback (including an indication of when the change occurs, in the case

of missed detections). Participants advanced to testing after completing at least 15

trials and correctly answering 5 consecutive trials (all participants completed training

in under 30 trials).

In Experiments 1, 2, and 3, participants responded via keyboard (or response
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box for Experiment 3) whether or not they heard a change after the melody finished.

In Experiment 1b, listeners responded in the middle of the melody trial as soon as

a change was heard by pressing the space-bar. If the space-bar was not pressed

before the end of the melody presentation, this was recorded as a negative response.

Responses before the nominal changepoint of change trials (i.e., the midpoint) were

considered false-alarms.

In psychophysics experiments (1, 1b, 2), Stimuli were synthesized offline as 16-bit,

44.1 kHz wav-files and presented via over-ear headphones (Sennheiser HD 595) at

a comfortable listening level using PsychToolbox (psychtoolbox.org) and custom

scripts in MATLAB (The Mathworks). Participants were seated in an anechoic booth

in front of the presentation computer. The experiment duration was approximately

50 minutes.

In the Experiment 3, subjects were seated in an anechoic chamber with stimuli

presented via in-ear earphones (Etymotic ER-2) at a comfortable listening level. Before

each melody trial, a cross appeared in the center of the screen, and subjects were

instructed to fixate on the cross to reduce eye movement artifacts.

3.2.4 EEG recording and data analysis

In Experiment 3, EEG was recorded using a BioSemi ActiveTwo system (Biosemi)

with 32 electrodes placed in central and frontal locations on the scalp selected to

maximize signal-to-noise ratio for neural signals originating in auditory centers of the

brain [66, 67]. Six additional electrodes were placed on left and right mastoids, the

nose, and alongside the eyes for re-referencing and blink artifact removal. Data was

recorded at a sampling rate of 4096 Hz.

For each subject, EEG data were preprocessed with custom scripts in MATLAB
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using the FieldTrip toolbox (www.fieldtriptoolbox.org) and NoiseTools [68]. Con-

tinuous EEG was re-referenced to the left mastoid, filtered to 1–100 Hz (two-pass

Butterworth, 3rd-order for high-pass and 6th-order for low-pass), and re-sampled to

256 Hz. The data was then cleaned in two stages using Independent Component

Analysis (ICA) and Denoising Source Separation (DSS). First, continuous EEG data

was epoched to 1 second segments; segments with amplitude range exceeding 3 s.d.

from the mean by channel were excluded before applying ICA to identify components

attributable to eye motion artifacts. These artifact components were removed from

the continuous EEG data, and the ICA-cleaned data was epoched to melody trials.

DSS was then used to enhance stimulus-locked activity; the top 5 DSS components

that were most repeatable across melody trials were kept and projected back to sensor

space, thus removing EEG signal not related to auditory stimulation [68].

We used regression to investigate effects of model surprisal on ERP responses

based on the framework described in [69, 70]. For each subject, EEG data was further

low-pass filtered at 30Hz (6th-order Butterworth) and epoched by tone with the 50-ms

window preceding tone onset used for baseline subtraction. Outlier tone trials with

amplitude exceeding 3 s.d. from the mean were excluded from the analysis.

We fit the following regression model to single-trial ERPs:

yi(t) = β0(t) + SLβL(t) + SHβH(t) + ϵi(t)

where surprisal from the LOS model (SL) and the HOS model (SH) serve as predictors

in the regression for the ith single-trial ERP (yi). The regression contains an intercept

term β0, which captures the baseline ERP response, and slope terms βL and βH , which

capture the differential response due to a unit change in SL and SH , respectively.

Finally, ϵi is the residual error for the i-th trial. Note that these terms are indexed by
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time, so the regression finds the linear relationship between regressors (SL and SH)

and the single-trial ERPs at each time point, yielding a regression-ERP, or rERP [69].

The regression was applied separately for each subject to EEG data averaged across

all 32 electrodes.

We used phase-locking value (PLV ) to measure neural phase-locking to tones.

PLV is a measure of phase agreement across trials independent of signal power:

PLV = 1
n

⃓⃓⃓⃓
⃓

n∑︂
i=1

ϕi/|ϕi|
⃓⃓⃓⃓
⃓

where the ϕi’s are complex phasors extracted from the Fourier transform at the

frequency of interest (6.25Hz, the tone presentation rate) for the ith trial, and n is the

number of trials. PLV was calculated separately for 1120ms (7-tone) epochs before

and after the changepoints, and the difference, ∆PLV = PLVafter − PLVbefore, was

used to measure the change in phase-locking at the changepoints. Only change trials

correctly detected by both listener and model were included in this analysis.

For statistical testing, ∆PLV was compared to 0 (t-test) and to a null distribution

(random permutation test) estimated by calculating ∆PLV from randomly sampled

changepoints across the melody. The null distribution ensures any observed change in

PLV at the changepoints is not simply due to the random variability in phase-locking

present across the melody trial.

3.2.5 Model

We use the D-REX model described in Chapter 2 to interpret behavioral and neural

data in Experiments 1–3. To collect responses from the model that are comparable to

those collected from human listeners, we derived a change probability—the probability a

change has occurred—from the context beliefs, B⃗t, which form the posterior probability
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over context hypotheses given all observed observations: P(ci|x1:t). The probability

that a change has not occurred before time t is equal to the belief that the current

context is equal to the length of the entire observed sequence (i.e., P (ci = t|x1:t)); the

probability that at least one change has occurred is then the converse of this, or the

sum of beliefs in contexts less than the length of the observed sequence:

P (Change|x1:t) = 1 − P (ci = t|x1:t) =
∑︂
c′<t

P (ci = c′|x1:t)

This probability of a change grows over time, representing the accumulation of evidence

of a change. We then apply a simple decision rule to get a binary change detection

response from the model. At the end of the melody (i.e., post-trial), the model makes

a change decision by comparing the final change probability to a decision threshold:

Change decision =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Yes, P(Change|x1:T ) ≥ τ

No, P(Change|x1:T ) < τ

where T is the full melody length and the threshold τ is an additional parameter of

the model. We then define the model changepoint as the earliest time at which the

change probability exceeds this threshold:

Model changepoint = arg min
t

{P(Change|x1:t) ≥ τ}
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Figure 3-1. Random fractal stimuli. Schematic spectrograms shown with frequency
and time along the vertical and horizontal axes, respectively. a) Melodies at four levels of
entropy, parameterized by β. Higher β corresponds with lower entropy, and vice versa. b)
Change stimuli for each change direction; INCR and DECR stimuli always end and begin,
respectively, with the highest level of entropy (β = 0 or white noise).

3.3 Results

3.3.1 Perceptual experiments

A series of experiments probed listener’s ability to detect changes in fractal melodies.

Stimuli were constructed from melodies at four levels of randomness or entropy in

pitch (both terms used interchangeably). Melody entropy is parameterized by β,

where β = 0 corresponds to the highest entropy (white noise), and entropy decreases

as β increases (see Fig 3-1a for examples of fractal melodies at different levels of

β). Lower-order statistics (mean and variance) were normalized across the melody.

Half-way through the melody, only the higher-order statistics change (see Fig 3-1b

for examples of change stimuli). The task in all experiments was the same: detect a

change in entropy of the melody.
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Experiment 1

We tested how well listeners could detect changes in the entropy of tone sequences

and whether the direction of change affected detection performance; see Fig 3-1b for

example stimuli. Listeners (N = 10) heard stimuli with three degrees of change in

entropy (between β = 0 and β = 1.5, 2, 2.5) in both directions (INCR and DECR),

with control stimuli containing no change (with β = 0, 1.5, 2, 2.5). Each melody trial

contained 60 tones presented isochronously over 10.5 seconds (175 ms inter-onset

interval); there were 150 trials in total, with 15 trials per condition. After each

melody trial, listeners responded whether they heard a change and received immediate

feedback.

Detection performance as measured by d′ is shown in Fig 3-2a; d′ comprises

both hits and false-alarms (FAs), with higher d′ corresponding to better detection

performance and d′ = 0 corresponding to chance performance. Repeated-measures

ANOVAs were used in all analyses to account for between-subject variability. An

ANOVA with 2 within-subjects factors (3 change degree x 2 direction) showed a strong

effect of degree (F (2, 18) = 31.5, p < 0.0001), no significant effect of direction, and

a significant interaction (F (2, 18) = 9.4, p < 0.01). We investigated this interaction

further by applying ANOVAs separately to hit- and FA-rates. The hit-ANOVA showed

a strong effect of degree (F (2, 18) = 21.9, p < 0.0001) but no effect of direction or

interaction, while the FA-ANOVA showed an effect of entropy level (F (3, 27) = 4.7,

p < 0.01), with FAs increasing with entropy (Note the increase in degrees-of-freedom

is due to the 4 levels of β for control stimuli). The significant interaction between

degree and direction seen in d′ above is therefore only due to the effect of entropy

on FAs: all DECR stimuli begin with the same high level of entropy (β = 0), thus

increasing FAs and decreasing d′ for DECR compared to INCR stimuli.
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Figure 3-2. Psychophysics results from Experiments 1 and 2. Average change
detection performance (d′) across subjects is shown by stimulus condition. Error bars
indicate 95% bootstrap confidence interval across subjects. a) In Experiment 1 (N = 10),
melody entropy changed with different degrees (∆β, abscissa) and in both INCR and
DECR direction (color). Detection performance increased with ∆β but did not differ by
direction, although there was a weak interaction between ∆β and direction due to FAs
only. b) In Experiment 2 (N = 10), an additional factor of melody length was introduced
(color). Detection performance increased with both ∆β and melody length.

It is surprising that there is no effect of change direction on hit-rates. If listeners

are relying solely on lower-order statistics, INCR changes should be easier to detect

than DECR changes by listening for outliers. We look closely at this effect in a

follow-up experiment (Experiment 1b) to contrast response time (RT) to INCR versus

DECR changes.

Experiment 1b

In this experiment, listeners (N = 21) responded as soon as they heard a change

during melody presentation; otherwise, the stimuli and procedure were the same as in

Experiment 1. To confirm that the difference in task itself had no effect on detection

performance, two-sample t-tests of d′ for each condition showed no difference across

the two experiments (p > 0.05 for all tests, using Bonferroni correction for multiple
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comparisons). In addition, ANOVAs applied to hit- and FA-rates as in Experiment 1

showed the same significant effects.

A repeated-measures ANOVA applied to the RT data averaged within conditions

for change-trials (3 change degree x 2 direction) showed a significant main effect of

change degree (F (2, 40) = 14.3, p < 0.0001) but no main effect of direction and no

significant interaction, confirming the result from Experiment 1 with no effect of

change direction on detection performance.

Experiment 2

Next, we tested the effect of sequence length on change detection performance. In

addition to the same change degree and direction manipulations from Experiment 1,

listeners (N = 10) heard melodies with different lengths (20, 40, and 60 tones), with

the change always occurring at the midpoint of the melody. As there was no effect

of change direction on performance seen in Experiments 1 and 1b, we pooled results

across INCR and DECR trials. As in Experiment 1, listeners responded whether they

heard a change after the melody presentation and received immediate feedback.

Detection performance as measured by d′ is shown in Fig 3-2b. A repeated-measures

ANOVA with 2 factors (3 change degree and 3 melody length) showed significant

main effects of both change degree (F (2, 18) = 23.9, p < 0.0001) and melody length

(F (2, 18) = 17.7, p < 0.0001), with a weak interaction (F (4, 36) = 2.8, p < 0.05). Post-

hoc tests indicated the weak interaction was due to chance performance in the most

difficult conditions: ∆β = 1.5 with lengths of 20 and 40 tones. In separate ANOVAs for

hit- and FA-rates, hit-rates showed both main effects of change degree (F (2, 18) = 10.2,

p < 0.01) and length (F (2, 18) = 29.6, p < 0.0001) with no significant interaction,

while the FA-rates only showed a significant effect of entropy level (F (2, 18) = 14.6,

p < 0.001) and no effect of length or interaction.
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3.3.2 Computational Model

In this application of the D-REX model, the generating distribution is assumed to be

a D-dimensional multivariate Gaussian with unknown mean and covariance structure,

where the dimensionality D specifies the amount of temporal dependence in the model.

As new observations come in, the model incrementally collects sufficient statistics

whose form depends on D. Here, we ask whether human behavior from Experiments

1–2 can be captured by a model that collects marginal lower-order statistics (D=1,

i.e., mean and variance) or if higher-order statistics (D=2, i.e., mean, variance, and

covariance) are needed; we refer to these two versions of the model as the LOS model

and HOS model, respectively.

Perceptual parameters and model behavior

We first examined the model detection performance for different sets of model param-

eters: memory (m), observation noise (n), change-prior (π), and threshold (τ). Using

a parameter sweep, we collected model change decision responses to the same stimuli

used in Experiments 1–2 and measured model performance for each operating point

in the sweep.

Fig 3-3 shows model performance for Experiment 1. Performance is displayed in

Receiver Operating Characteristic space (ROC-space); ROC-space is a method for

visualizing the trade-off between Hit- and FA-rates in system performance at multiple

operating points (i.e., parameter sets); the upper-left corner is perfect performance

(Hit=1, FA=0), and the diagonal is chance performance (Hit=FA). Fig 3-3a displays

the coverage of model performance in ROC-space for the LOS and HOS model (in blue

and red, respectively); for example, at every red-colored coordinate in ROC-space,

there is a set of parameters {m, n, τ, π} in the HOS model with that performance (i.e.,
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Figure 3-3. Range of model behavior in Experiment 1. Model detection performance
measured at different operating points in a parameter sweep. a) Comparison of detection
performance for LOS and HOS models displayed in ROC-space across the parameter sweep,
with model type denoted by color. Each blue (red) coordinate indicates existence of a
parameter set for the LOS (HOS) model yielding that performance. Individual human
performance from Experiments 1 and 1b is overlaid, along with equal-d′ curves. b) d′

surface as a function of memory (m) and observation noise (n) parameters for LOS model
(top) and HOS model (bottom). π and τ were held constant at 0.01 and 0.5, respectively.

Hit- and FA-rate). In this manner, we can compare the range of performance between

the two models across the entire parameter sweep. Individual human performance

from Experiments 1 and 1b (with the same stimuli, N = 31) and equal-d′ curves are

overlaid in the same space for comparison. Results from Experiment 2 were similar.

There is a clear contrast in the range of performance in ROC-space between LOS

and HOS models, with the HOS model having both wider coverage and higher ceiling

performance overall compared to the LOS model. While the LOS model only overlaps

with poorer performing subjects (d′ < 1.5), the HOS model overlaps with all human

performance points. Additionally, human performance never exceeds the range of the

HOS model, indicating that with unconstrained resources (i.e., infinite memory and

zero observation noise) the HOS model can act as an “ideal observer”, providing an

51



CHAPTER 3. INFERENCE ALONG A SINGLE DIMENSION

upper bound for human performance.

Fig 3-3b shows the d′ surface for the LOS model (top) and HOS model (bottom)

as a function of the two perceptual parameters, allowing us to assess which parameters

are responsible for the performance variability seen in Fig 3-3a for each model. With

the LOS model, the memory m is largely responsible for performance variability,

with only a narrow band around m = 10 where the LOS model performs well above

chance (d′ = 0). The HOS model performance, on the other hand, varies jointly with

both memory m and observation noise n, with the best performance around {n = 0,

m = 30}.

Fitting the model to subject behavior

We fit the model parameters to each subject from Experiments 1–2. There was very

high between-subject variability in performance (e.g., see human performance plotted

in ROC-space in Fig 3-3a), so we examined how the parameters from the fitted model

explain this variance. Model performance was measured for each set of parameters in

the parameter sweep, and the best set of parameters was selected for each subject using

minimum Euclidean distance between model and subject performance. Performance

was measured using hit- and FA-rate within each change direction, which provided a

more stringent criterion for distinguishing between parameters with equal overall hit-

and FA-rates.

Fig 3-4 shows results from fitting the model to subjects from Experiments 1–2

(N = 41). In Fig 3-4a, subject d′ is plotted against model d′ for both LOS and HOS

models. Using a linear regression with zero-intercept, the HOS model provided a

better fit to subject behavior (r2 = 0.85, p < 0.0001) compared to the LOS model

(r2 = 0.23, p < 0.0001), which cannot match the better-performing subjects.

Fig 3-4b shows the fitted perceptual parameters (m and n) plotted against subject d′
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Figure 3-4. Model fit to subject behavior from Experiments 1–2. a) Subject d′

plotted against fitted model d′ for both LOS and HOS models, denoted by color. Legend
shows r2-value from zero-intercept linear regression. b) Fitted perceptual parameters
plotted against subject d′ for m (top) and n (bottom), with LOS model on the left and
HOS model on the right. r2 and p-values shown for standard linear regression.

for the LOS and HOS models. With the LOS model (left), neither perceptual parameter

has a significant linear relationship with subject d′ (m: r2 = 0.009, F (1, 39) = 0.359,

p > 0.05; n: r2 = 0.05, F (1, 39) = 2.03, p > 0.05). With the HOS model (right), both

memory and observation noise exhibit significant linear relationships with subject

d′ (m: r2 = 0.423, F (1, 39) = 28.6, p < 0.0001; n: r2 = 0.352, F (1, 39) = 21.1,

p < 0.0001), with higher memory and lower observation noise corresponding with

better subject performance. Similar analysis with the other model parameters (π and

τ) showed no correlation with subject d′ for either model.

To determine whether both perceptual parameters are needed to fit the HOS

model to subject behavior, we tested a reduced model with only one of the perceptual

parameters free. The memory-only HOS model, holding observation noise at n = 0,

provided a poorer fit compared to the full HOS model shown in Fig 3-4a (r2 = 0.60,

p < 0.001), as did the observation noise-only HOS model, holding memory at the
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maximum stimulus length m = 60 (r2 = −0.29, p < 0.001). Both memory and

observation noise are needed as constraints to the model to fit the full range of human

behavior.

Additionally, we compared the model changepoints to the RTs collected in Ex-

periment 1b. Using a linear regression, the HOS model showed a significant linear

relationship between model changepoint and subject RTs (r2 = 0.05, F (1, 1512) = 86.9,

p < 0.0001), while the LOS model showed no significant relationship. Importantly,

the model was fitted using the Yes/No response only and not the RTs themselves.

3.3.3 Electroencephalography

Next, we examined neural underpinnings of higher-order stochastic regularities in the

brain. Experiment 3 is structured similarly to Experiments 1 and 2 above: listeners

were asked to detect changes in stochastic melodies while EEG was simultaneously

recorded from central and frontal locations on the scalp. Stimuli were generated at

two levels of entropy (i.e., one change degree) with both INCR and DECR change

direction.

Deviance response according to melody entropy

We first examined effects of melody entropy on ERPs to individual tones. Magnitude

of frequency deviation (∆F ) is known to affect ERP morphology [15], so to determine

any additional effect of entropy on the ERP, we computed average ERPs for both

small and large ∆F (∆F=1 and 4 s.t. or semitones from the previous tone) at each

entropy level (LOW and HIGH). Large ∆F tones are more rare in LOW entropy

melodies compared to HIGH entropy melodies, so we might expect a deviance response

that reflects this difference in relative occurrence (as seen in [15]). ∆F = 1 was chosen

because it is the most frequent in both entropy levels, and ∆F = 4 was chosen to
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maximize frequency deviation magnitude while ensuring an adequate number of trials

in the LOW entropy condition. We note that this analysis is more closely aligned

with lower-order statistics, where deviance is always proportional to ∆F .

Fig 3-5a (top) shows grand-average ERPs for the four conditions averaged across

frontal electrodes, which exhibited the strongest effect (described below). There is a

divergence around 150-280 ms post-onset, where the ERP to large ∆F in LOW entropy

(purple-dotted line) increases relative to the corresponding ERPs with the same ∆F

(gray-dotted line) or the same entropy context (purple-solid line). Fig 3-5a (bottom)

shows the mean amplitude in two time windows: 1O 90–150ms and 2O 170–260ms,

corresponding roughly to N1/MMN and P2 time ranges [15]. A repeated-measures

ANOVA with 2 factors (entropy and ∆F ) applied to the later window showed a main

effect of entropy (F (1, 7) = 7.49, p < 0.05) and a trend due to ∆F (F (1, 7) = 4.57,

p < 0.07) with no interaction effect. Considering large-∆F amplitudes only, a post-hoc

paired t-test showed a significant difference between LOW and HIGH entropy contexts

(p < 0.05). We performed the same t-test for each electrode; Fig 3-5a (bottom, far

right) shows the p-values by electrode plotted on the scalp, with significant differences

at frontal electrodes only. Similar analysis on the earlier window 1O showed no effects

of frequency deviation or entropy context.

An MMN response is notably absent from the ERPs in Fig 3-5a, even though

large frequency deviations are rare in LOW entropy melodies. Assuming an MMN

response in the brain to regularity deviations, this indicates a discrepancy between the

“regularity” as defined in this analysis and the regularity collected by the brain: the

MMN response is not well-differentiated by frequency deviation alone, and therefore

it does not show up in this analysis. To see an MMN response, we need the proper

definition of regularity in our analysis.
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Figure 3-5. Contextual effects on tone ERP. a) Grand-average ERPs (top) for large
and small ∆F in LOW and HIGH entropy melodies show a positivity for large ∆F in LOW
entropy context around 200ms after tone onset. Mean amplitudes are shown for 1O and 2O
time windows (bottom). Scalp map (right) shows frontal distribution of t-test p-values for
large ∆F deflection between entropy contexts. b) Using model surprisal, regression-ERP
analysis teases out distinct components depending on the set of statistics used in the
model: a positivity 150-230ms after onset with LOS surprisal (similar to a) above) and
an MMN-like negativity 100-200ms after onset with HOS surprisal. Error bars show 95%
bootstrap confidence interval across subjects.

Deviance response according to model surprisal

The model outputs surprisal as a continuous measure of regularity violation, where

the regularity is defined by the statistics collected by the model. We used a linear

regression analysis to find contributors to the tone-elicited ERPs attributable to

surprisal from the LOS and HOS models fit to individual subject behavior [69, 70].

The resulting regression ERPs (or rERPs) give a fitted regression to single-trial

ERPs at each time-point for each measure of surprisal, and their interpretation is

straightforward: the surprisal rERP shows the change in the baseline ERP for a unit

increase in surprisal (see Methods).

Fig 3-5b shows the surprisal rERP for the LOS model (top) and HOS model

(bottom). The rERPs show two distinct contributors to the ERP differing both in

polarity and latency, with the LOS-rERP containing a positive deflection around

150–250ms post-onset and the HOS-rERP containing a negative deflection around

100–200ms.
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To test the significance of these rERP deflections, we applied a linear mixed effects

(LME) model to single trial amplitudes in the same two windows as the analysis above:

90-150ms and 170-260ms after tone onset, roughly corresponding to N1/MMN and

P2 time windows. LME models are well-suited for testing single-trial effects with

unbalanced designs [71], which is the case with surprisal (by definition, there are

fewer surprising events than unsurprising events). In the later time window, the LME

model showed a significant effect of LOS-surprisal (p < 0.01) on mean amplitude and

no effect from HOS-surprisal. The same model applied to mean amplitude in the

earlier time window showed the opposite: no significant effect from LOS-surprisal

and a significant effect from HOS-surprisal (p < 0.001). This analysis shows deviance

responses in the tone-ERP that differ depending on the statistics, or regularities,

collected by the model, and an MMN-like response only to tones surprising according

to the higher-order statistics of the preceding melody.

Disruption in phase-locking at model changepoint

We examined neural phase-locking to tone onsets before and after changepoints

obtained from the LOS and HOS models. Phase-locking at the tone presentation rate

(6.25 Hz) was measured from EEG data averaged across all 32 electrodes using the

phase-locking value (PLV ). PLV provides a measure of the phase agreement of the

stimulus-locked response across trials, independent of power [72]. The difference in PLV

before and after the changepoint (∆PLV ) measures the disruption in phase-locking

at that time (see Fig 3-6a for illustration of ∆PLV calculation).

∆PLV was measured at four sets of changepoints: the LOS and HOS model-

changepoints, the nominal changepoint, and a control condition. The nominal change-

point (i.e., the midpoint) is the time where the generating distributions before and

after have the greatest contrast. As a control for this analysis, HOS-changepoints
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Figure 3-6. Phase-locking analysis at model changepoints. ∆PLV is used to
measure disruptions in phase-locking of EEG to the tone presentation rate (6.25 Hz) at
the time when the model detects a change in the stimulus (i.e., at the changepoint).
a) Illustration of ∆PLV calculation. PLV measures phase agreement across trials
independent of power; an example PLV calculation (right) shows the phase of individual
EEG trials (in grey)—PLV is the magnitude of the mean of these normalized phasors
(in black). ∆PLV is then the difference in PLV within a 7-tone (1-sec) window before
and after the changepoint (left, shown at the HOS changepoint in the melody). For each
subject, ∆PLV was calculated for three sets of changepoints: the changepoints output
from the LOS and HOS models, and the nominal changepoint (i.e., midpoint) used to
generate the stimuli. Additionally, as a control, the same HOS changepoints were applied
to responses to no-change stimuli. b) Empirical distributions of ∆PLV at the LOS-,
HOS-, Nominal-, and Control-changepoints (line) calculated by bootstrap sampling across
subjects, along with the null distribution (solid gray) calculated by performing the same
analysis with random sampling of the changepoint position. This null distribution estimates
variability in ∆PLV present throughout the melody. Significant change from zero and
from the null distribution is seen in the HOS-changepoint only.
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were randomly assigned to control trials to ensure that any difference in PLV was

due to the neural response recorded during change trials, and not simply due to the

position of the changepoints.

Fig 3-6b shows the bootstrap distributions of the mean ∆PLV for each set of

changepoints (lines). A paired t-test shows a significant decrease in PLV at the

HOS-changepoints (p < 0.001), while there was no significant difference for the other

changepoints. We also tested the ∆PLV measured at the changepoints against

the variation in phase-locking present throughout the melody by estimating a null

distribution, sampling null-changepoints at random positions in the melody and

calculating ∆PLV . There was again a significant difference for the HOS-changepoints

only (p < 0.001). These results together indicate there is a disruption in phase-locking

that is specifically related to the changepoints obtained from the fitted HOS model.

3.4 Discussion

How the brain extracts information from stochastic sound sources for auditory scene

analysis is not well understood. We investigated stochastic regularity processing using

change detection experiments, where listeners detected changes in the entropy of

pitches in melodies. Results from Experiments 1–2 confirmed results from previous

work showing that listeners represent information about stochastic sounds through

statistical estimates [14, 31]. Listeners’ detection performance scaled with change

degree (Experiments 1, 1b) and with the length of the sequence (Experiment 2),

consistent with the use of a sufficient statistic to detect changes: a larger change in the

statistic and a larger pool of sensory evidence both improved detection performance.
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What statistics are collected by the brain?

We introduced a perceptual model for stochastic regularity extraction and applied

this model to the same change detection experiments as our human listeners. We

used different sets of statistics in the model to determine which best replicate human

behavior: a lower-order statistics (LOS) model that collects the marginal mean and

variance of tone pitches or a higher-order statistics (HOS) model that additionally

collects the covariance between successive tone pitches. Comparing the performance

range for LOS and HOS models to human performance, we showed that higher-order

statistics are necessary to capture all human behaviors, while lower-order statistics

are insufficient to capture the full range of subject behaviors. This disparity strongly

suggests the brain is collecting and using higher-order statistics about the temporal

dependencies between incoming sounds. Furthermore, the model revealed effects in

EEG that are only discernible using higher-order statistics: ERP evidence showed

an MMN response elicited by tones that are surprising according to the higher-order

statistics of the preceding melody, and cortical phase-locking was disrupted at the

changepoints specified by the HOS model.

Interestingly, both LOS and HOS models were able to replicate behavior from

poorer performing subjects (d′ < 1.5), but the LOS model is unable to mirror behaviors

with high hit-rates without also increasing the FA-rate (Fig 3-3a). Intuition states that

marginal statistics within the local context (i.e., short memory or small m) might be

effective for detecting changes in local variance in the fractal sequences; this notion is

supported by the model, where m = 10 tones yields the best LOS model performance

(Fig 3-3b). Yet this local LOS model, with limited sampling in the statistics collected,

is unable to match the performance exhibited by better performing subjects. In other

words: if listeners (or the LOS model) rely solely on marginal statistics, then their
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ability to accurately flag changes in random fractal structure is highly constrained.

Furthermore, relying on low-order statistics should elicit an effect of the direction of

change (from low to high entropy or vice versa) on the hit-rates. Behavioral data

shows no such effect of change direction on behavioral hit-rates (Experiments 1 and

1b), which further corroborates that listeners cannot be solely relying on lower-order

statistics.

While these results strongly argue for the brain’s ability to track higher-order

statistics in sound sequences, they do not disagree with previous work demonstrating

sensitivity to lower-order statistics [14, 16]. Rather, by designing a task in which

higher-order statistics are beneficial, we show that listeners are additionally sensitive to

the temporal covariance structure of stochastic sequences. We also do not argue that

the statistics collected by the brain are limited to these, but could include longer-range

covariances. We performed the same analysis using a D = 3 model that collects

covariance between non-adjacent sounds, but it did not provide any improvement

over the D = 2 (HOS) model. This merely means that for our stimuli, there was no

additional information to aid in change detection beyond the adjacent covariances.

Additional experiments with stimuli that specifically control for this are needed to

determine the extent of the temporal range of statistics collected by the brain.

Individual differences revealed by stochastic processing

By their very nature, the stimuli used here exhibit a high degree of irregularity and

randomness across individual instances of sequences. For the listener, deciding where

the actual change in regularity occurs in a particular stimulus is a noisy process that

arises with some level of uncertainty. Perceptually, most trials do not contain an

obvious “aha moment” when change is detected; rather, the accumulation of evidence

for statistical change emerges as a gradual process. Similarly, from a data analysis point
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of view, determining the exact point of time when the statistical structure undergoes

a notable change is a nontrivial problem, given that the perception of statistical

change is not binary but continuous and varies both between trials and between

listeners. As such, the study of stochastic processing hinges on the use of a model

that is well-matched to the computations occurring in the brain, combining the right

granularity of statistics with the right scheme for cue integration and decision making.

And with the introduction of perceptual parameters to the model, we gain flexibility

in the behaviors that can be reproduced by the model with clear interpretation as to

the computational constraints leading to these behaviors.

Taking a close look at individual differences through the lens of the model, we

were able to inspect underlying roots of this variability. Rather than simply a

difference in decision threshold (i.e., “trigger-happiness”), we argue the variability

across listeners was due to individual differences in the limitations of the perceptual

system. We incorporated these limitations into the model via perceptual parameters.

The memory parameter represents differences in working memory capacity [51, 52], and

the observation noise parameter represents individual differences in pitch perception

fidelity [53]. We should note that these parameters may also be capturing other

factors that affect listener performance like task engagement, neural noise, or task

understanding, which could be contributing noise to these results. However, preliminary

evidence supports the connection between the memory parameter in the model and

working memory capacity, as measured by established paradigms (see Appendix II for

preliminary results), and future investigation could further strengthen this claim.

By fitting the model to individual listeners through their behavior, we showed

correlates between human performance and the perceptual parameters of the model,

and we found that neither perceptual parameter alone was adequate to fit all subjects.
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Rather than a nuisance, we see the inter-subject variability in these results as a

consequence of individual differences in the perceptual system that are amplified by

the uncertainty present in stochastic processing.

Neural response depends on statistical context

We found effects of the statistical context on the neural response. First, examining

ERP responses to individual tones, we found an enhanced P2 response to large

frequency deviations in low-entropy melodies compared to high-entropy melodies and

a frontal distribution of this difference consistent with sources in the auditory cortex.

This result corresponds with previous work where large frequency deviations that were

less likely given the previous context showed an enhanced P2 amplitude [15]. Similarly,

we interpret this result reflecting a release from adaptation, where the low-entropy

melody has a narrow local frequency range. Importantly, we do not see an MMN

effect, arguably because frequency deviation alone is too crude to provide an adequate

definition of “deviant” with our stochastic stimuli: large frequency deviations do

not always violate the regularities in our stimuli, which may explain the lack of an

observable MMN in the average differential response.

Using the fitted model, we were able to tease out distinct surprisal effects on the

tone ERP that differ both in statistics and in temporal integration window: the LOS

surprisal measured how well each tone was predicted by the lower-order statistics of

the local context, while the HOS surprisal measured how well each tone was predicted

by the higher-order statistics of the longer context, as fit by the model to individual

behavior. Because LOS and HOS surprisal are partially (and unavoidably) correlated,

both LOS and HOS surprisal were included in a single regression in order to find

components in the ERP that correlate with each independent of the other [69].
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We found an enhanced P2 amplitude with increasing LOS surprisal that is similar

in amplitude and latency to the P2 difference discussed above; indeed, LOS surprisal

provides a similar definition of regularity to the ERP analysis based on melody entropy

above, for large frequency deviations are always “deviants” according to the lower-

order statistics. We again attribute this increased P2 to a release from adaptation.

Consequently, we can then attribute the MMN response to HOS surprisal as a deviance

response according to higher-order statistics independent from lower-order adaptation

effects.

There has been much discussion on whether the MMN response is truly a de-

viance response or merely due to adaptation [73, 74]. Many experiments suffer from

confounding frequency deviance with regularity deviance, making it difficult to defini-

tively attribute MMN to one or the other. With our stochastic stimuli differing

in higher-order statistics, we were able to disentangle the two interpretations. We

again stress that this result is not in conflict with previous results showing effects of

lower-order statistics on the MMN [14, 16], because deviants in these studies could

also be considered deviants according to their higher-order statistics (i.e., the HOS

model reduces to the LOS model when the covariance between sounds is zero).

Finally, we found a disruption in the brain’s phase-locked response to tone onsets

that coincides with HOS model changepoints, where the model detects a change in the

higher-order statistics of each stimulus. Contrasting various controls using different

estimates of when the change point occurs, we observed a notable phase disruption

with changes in higher-order statistics only. The change in phase synchrony across

trials could be due to the combined modulation of multiple ERPs to tones following

the changepoint, or it could reflect a change in the oscillatory activity of the brain,

which has been shown to correspond with both changes in predictive processing and
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attentional effects [48, 75]. Further experimentation is needed to determine the source

of this disruption. Importantly, this analysis takes into account the stochastic nature of

the stimuli by interpreting the statistical structure of each stimulus through the model,

rather than with the changepoint used to generate the stimuli (i.e., the “nominal”

changepoint).
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Chapter 4

Statistical inference

along multiple dimensions

4.1 Introduction

In everyday environments, the brain sifts through a plethora of sensory inputs, tracking

pertinent information along multiple dimensions despite the persistent uncertainty

in real-world scenes. While listening to an orchestral performance, the brain tracks

variability in pitch and timbre as the music unfolds, just as it can visually track a

flock of birds flying overhead despite the high uncertainty in their flight pattern and

orientation. Inferring statistical structure in complex environments is a hallmark of

perception that facilitates robust representation of sensory objects as they evolve

along different perceptual dimensions (or features, used interchangeably). Evidence

of statistical inference has been documented in audition [76–79], vision [20, 80], and

olfaction [81], as well as across sensory modalities [82, 83], showing it underlies the

encoding of sensory scenes in memory. These mnemonic representations then guide

the interpretation of future sensory inputs.
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In this chapter, we examine the mechanisms behind statistical inference along

multiple dimensions. Just as in Chapter 3, we use the D-REX model to guide

investigation into the nature of the brain’s internal model used for predictive processing.

This internal model reflects the statistics of objects in the environment, and as

such, must incorporate predictive information across multiple perceptual dimensions

(e.g. pitch, timbre, color, shape). The nature of this internal model as it spans

multiple dimensions has often been examined by invoking learning of rules and cross-

feature associations, or encoding of complex exemplars in memory [8, 77, 84–87];

and there are suggestions that this model can be based on both object- and feature-

level representations, depending on whether there are dependencies across features

indicating a shared source [88, 89]. Yet, structured regularities embedded in these

association-based stimuli tend to over-simplify the dynamics and volatility present in

real-world environments. Importantly, they conceal the granularity of the mnemonic

representation as it tracks features that may not be so tightly associated even if

originating from the same source or object. In the present study, we use stochastic

auditory sequences to explore the internal representation of more complex regularities

and the integration of statistical predictive information across features.

The oddball paradigm has been used extensively to demonstrate the brain’s

ability to track regularities along various auditory dimensions such as pitch, loudness,

duration, timbre, and spatial location [90–93]. Many neurophysiology studies have

shown that the brain makes predictions along multiple features simultaneously, where

deviants co-occurring along multiple features elicit a neural response that is the

sum of responses to single-feature deviants [64, 94–97]. This parallel tracking likely

leverages the topographic organization in auditory cortex along different features [98,

99] (although cortical responses also show complex interactions to sounds varying
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along multiple dimensions [100–102]). While these studies suggest each dimension is

processed independently at the prediction stage, they do not give any indication of how

these independent predictions are combined at later stages of processing to give rise to

integrated object-level percepts. It is clear through behavioral studies (and everyday

experience) that listeners integrate across features to represent sound sources wholly

as objects [89, 103–106]. What is not clear is the manner in which independently

tracked sensory dimensions are joined into a unified statistical representation that

reflects the complexity and non-deterministic nature of natural listening scenarios.

To address the limitation of quasi-predictable regularities often employed in previ-

ous studies, we again utilize stimuli exhibiting random fractal structure in a change

detection paradigm, where listeners are tasked with detecting changes in entropy of

sound sequences. However, in this chapter we use fractal stimuli that vary along

multiple features—both spectral and spatial—and task listeners with detecting changes

in entropy along one or more features. With this paradigm, we probe the ability of the

brain to abstract statistical properties across features from complex sound sequences

in a manner that has not been addressed by previous work. Importantly, the statistical

structure of the sequences used in this study carry no particular coupling or correlation

across features, hence restricting the brain’s ability to leverage this correspondence in

line with previously reported feature fusion mechanisms observed within and between

visual, somatosensory, vestibular, and auditory sensory modalities [107–111].

In this chapter, we extend the D-REX model to multidimensional inputs in

order to make inferences about the underlying computational mechanisms behind

multidimensional predictive coding in the brain. We use this model as a framework to

ask targeted questions about statistical integration in complex listening environments:

Which statistics are tracked along each feature? When does integration across features
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occur? Are features combined linearly or through some other function? The model

is used to formulate alternative hypotheses addressing these questions and compare

them using the proposed behavioral paradigm. In addition, we use the output of

the model as an anchor for time-locking analysis of neural responses, combating the

temporal uncertainty that invariably creeps into the analysis of stochastic responses

to stochastic stimuli.

4.2 Methods

We conducted four experiments: two psychophysics experiments (experiments SP and

TP) and two similarly structured electroencephalography (EEG) experiments (experi-

ments nSP and nTP, with ‘n’ denoting neural). In experiments SP and nSP, stimuli

varied in spatial location (S) and pitch (P), as denoted by the naming convention; in

experiments TP and nTP, stimuli varied in timbre (T) and pitch (P).

4.2.1 Participants

In experiment SP, sixteen participants (8 Female) were recruited from the general

population (mean age: 25.1 years); one participant was excluded from further analysis

because their task performance was near chance (d′ < 0.05). In experiment TP, eighteen

participants (12 Female) were recruited (mean age: 21.5 years); three participants

were excluded due to chance performance. In experiment nSP, twenty participants (9

Female) were recruited (mean age: 23.4); two participants were excluded due to chance

performance. In experiment nTP, twenty-two participants (13 Female) were recruited

(mean age: 22.5); four participants were excluded due to chance performance.

All participants reported no history of hearing loss or neurological problems.

Participants gave informed consent prior to the experiment and were paid for their
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Figure 4-1. Multidimensional fractal stimuli. a) Stimuli were melodies comprised of
tones varying according to fractal structure along two dimensions simultaneously: Pitch
& Spatial location (in experiment SP and nSP) or Pitch & Timbre (in experiment TP
and nTP). At the midpoint of the melody, one or both features increased in entropy
(non-diagonal and diagonal arrows, respectively), while the non-changing feature remained
at low-entropy. For psychophysics experiments (SP and TP), the non-changing feature
could also have mid-level entropy (checkered arrows). b) Four example stimulus sequences
with condition indicated by small schematic on left. Red arrows indicate change in each
feature, when present. The bottom example is a control trial with no change. (See
Supplementary Materials for audio examples.)

participation. All experimental procedures were approved by the Johns Hopkins IRB.

4.2.2 Stimuli

Stimuli in all experiments were melodies comprised of a sequence of complex tones

varying along two perceptual features. Stimuli in experiments SP and nSP varied in

pitch and spatial location; stimuli in experiments TP and nTP varied in pitch and

timbre. Each feature followed the contour of a random fractal at different levels of

entropy, or randomness.

Random fractals are stochastic processes with spectrum inversely proportional

to frequency with log-slope β (i.e., 1/fβ), where β parameterizes the entropy of the
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sequence. Fractals at three levels of entropy were used as seed sequences to generate the

stimuli: low (β = 2.5), mid (β = 2), and high (β = 0, white noise). In all experiments

stimuli began with both features at lower entropy, and halfway through the melody,

one or both features increased to high entropy. In the psychophysics experiments

(SP and TP) for conditions with a single feature changing, the non-changing feature

could have either low or mid entropy. In the EEG experiments (nSP and nTP), the

non-changing feature always had low entropy. Control conditions contained stimuli

with no entropy change in either feature. See Fig 4-1 for an illustration of the different

stimulus conditions in each experiment.

Each complex tone in the melody sequence was synthesized from harmonic stack of

sinusoids with frequencies at integer multiples of the fundamental frequency, then high-

and low-pass filtered at the same cutoff frequency using fourth-order Butterworth

filters. Pitch was manipulated through the fundamental frequency of the complex

tone, and timbre was manipulated through the cutoff frequencies of the high- and

low-pass filters (i.e., the spectral centroid) [102]. Spatial location was simulated by

convolving the resulting tone with interpolated head-related impulse functions for the

left and right ear at the desired azimuthal position [112]. Seed fractals were generated

independently for each feature and each stimulus, standardized (i.e., zero mean and

unit variance), and then mapped to feature space as follows:

F0[t] = 350 ∗ 2 3x[t]/12

S[t] = 15y[t]

T [t] = 1200 ∗ 2 3z[t]/12

where F0[t], S[t] and T [t] are pitch (fundamental frequency in Hz), spatial location

(azimuth in degrees), and timbre (spectral centroid in Hz) sequences indexed by time
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t. x[t], y[t], and z[t] are their respective seed fractals. Fundamental frequency ranged

from 208 to 589 Hz, spatial location ranged from −45◦ to 45◦ azimuth at 0◦ elevation,

and spectral centroid (timbre) ranged from 714 to 2018 Hz.

In experiments SP and TP, melody stimuli were comprised of 60 complex tones,

each 100 ms in duration with 20 ms onset/offset ramps presented isochronously at

a rate of 10 Hz. 200 stimuli were generated, 25 for each condition (5 change, 3 no-

change). In experiments nSP and nTP, melody stimuli were comprised of 60 complex

tones, each 100 ms in duration with 20 ms onset/offset ramps presented isochronously

at a rate of 8.6 Hz. 200 stimuli were generated, 50 for each condition (3 change, 1

no-change).

4.2.3 Procedure

Stimuli were presented in randomized order in four blocks with self-paced breaks

between blocks. During each trial, participants were instructed to listen for a change in

the melody. After the melody finished, participants responded via keyboard whether

or not they heard a change. Immediate feedback was given after each response.

Listeners were not given explicit instructions about what to listen for, learning the

task implicitly in a training block prior to testing. Incorrect responses in the training

block resulted in the same stimulus being re-played with feedback (including, in the

case of missed detections, a visual indication of change during playback).

Stimuli were synthesized on-the-fly at 44.1 kHz sampling rate and presented at a

comfortable listening level using PsychToolbox (psychtoolbox.org) and custom scripts

in MATLAB (The Mathworks, Natick, MA). Participants were seated in an anechoic

chamber in front of the presentation screen.

In experiments SP and TP, stimuli were presented via over-ear headphones
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(Sennheiser HD 595) and participants responded via keyboard. The experiment

duration was approximately 50 minutes. In experiments nSP and nTP, stimuli were

presented via in-ear headphones (Etymotic ER-2) and participants responded via

response box. Additionally, before each melody trial, a fixation cross appeared on the

screen to reduce eye movement during EEG acquisition. The experiment duration,

including EEG setup, was approximately 120 minutes.

4.2.4 EEG data recording and analysis

EEG data in experiments nSP and nTP was recorded using a BioSemi ActiveTwo

system (BioSemi, Amsterdam, Netherlands) with 64 electrodes placed on the scalp

according to the international 10-20 system, along with two additional electrodes

specified by the BioSemi system used as online reference for common-mode rejection.

Data was recorded at a sampling rate of 2,048 Hz.

For each subject, EEG data were preprocessed with custom scripts in MATLAB

using the Fieldtrip toolbox (www.fieldtriptoolbox.org) [113]. Bad channels were

identified by eye and removed before proceeding with pre-processing. Continuous

EEG was filtered to 0.3–100 Hz (two-pass 4th-order Butterworth for high-pass and

6th-order Butterworth for low-pass) and re-sampled to 256 Hz. Data was then cleaned

in three stages: the Sparse Time Artifact Removal algorithm (STAR) was used to

remove channel-specific artifacts [114], Independent Component Analysis (ICA) was

used to remove artifacts due to eye movement and heartbeat, and missing channels

were interpolated using spline interpolation. The cleaned data was then epoched by

melody trial (-1 sec to 8 sec, relative to melody onset), re-referenced to the average of

all 64 scalp electrodes, and baseline corrected to the 1 sec window preceding melody

onset. Epochs with power exceeding 2 s.d. from the mean were removed from further

analysis (on average, 3.8% of trials excluded in nSP, 5% in nTP).
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We examined neural responses time-locked to outputs from the Late_D22_MAX

model by further epoching neural response around events of interest (-0.1 to 0.3 sec

relative to tone onset).

In the oddball analysis, the EEG response was averaged over nine fronto-central

electrodes (Fz, F1, F2, FCz, FC1, FC2, Cz, C1, C2) to maximize auditory-related

responses. High and low surprisal events were defined as tones with overall surprisal

above the 95th and below the 5th percentile, respectively. Tone-epochs within each bin

were averaged, and the high-surprisal response was subtracted from the low-surprisal

response to yield a difference wave.

To examine the linear relationship between the EEG response magnitude and

surprisal, tone-epochs across all stimuli were split into 40 bins according to overall

surprisal, and tone-epochs with power exceeding 2 s.d. from the mean were excluded

from analysis (average bin size per subject: 185 epochs). The average response across

tone-epochs within each bin was calculated, and the cumulative response magnitude

was computed over in the window 80–150 ms after tone onset and plotted against

the average surprisal within each bin. A similar analysis was performed using the

individual surprisal along each feature using 128 bins (average bin size per subject: 66

epochs), where the bins were determined by bifurcating the 2-D surprisal space across

all tones.

We examined the neural response time-locked to high surprisal and to maximal

belief change in two time windows: 80–150 ms and 300–800 ms. In each window, 10

channels with largest amplitude in the grand average (5 positive, 5 negative polarity)

were selected for statistical analysis. For each subject, response magnitude was

measured as the dB RMS amplitude across channels averaged over the time window

relative to a baseline window (-152 to -82 ms and -630 to -130 ms for the early and
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late windows, respectively).

4.2.5 Model

The D-REX model was extended to multidimensional predictive processing with

multiple potential implementations. These models differed in the statistics collected

along each feature, in the integration stage, and in the integration operator.

The statistics collected by the model were specified separately for each feature

by the dimensionality D. This parameter took two values: with D = 1 the model

assumed inputs were statistically independent, collecting only lower-order statistics

(mean and variance); with D = 2 the model assumed temporal dependence in the

input sequence, and collected higher-order statistics (i.e., covariance between adjacent

inputs).

Upon observing a new input xt+1, all models produce independent predictive

probabilities for each feature and for each context hypothesis: for example, pS
i and pP

i ,

where m ∈ {1, . . . , M} denotes the context hypothesis and the superscript denotes

the feature. The integration stage and integration operator specified where and how

information was integrated across features. With early-stage integration, predictions

within each context hypothesis were combined before updating shared context beliefs

Bt and outputting a shared change signal. With late-stage integration, the context

was inferred separately for each feature with distinct context beliefs (e.g., BP
t and

BS
t ) and change signals, and integration occurred across change signals. In early

and late integration, four integration operators were used: average, weighted average,

minimum, and maximum. For the weighted average, weights between 0 and 1 in steps

of 0.1 were used for convex weighting of the two features, and the weight yielding the

best fit for each subject was selected for comparison (more details on model fitting
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below).

In total, there were 32 variants of the model (2 D x 2 D x 2 stages x 4 operators).

To fit the models to individual listeners in experiments nSP and nTP, a grid search

with 95,000 iterations was used to find parameters M , N , and τ (memory, observation

noise, and decision threshold, respectively) that best replicated listener behavior for

each model variant. The model detection rate (i.e., percentage of trials wherein a

change was detected) in each condition was collected for each iteration in the search

procedure, and the parameters resulting in the least mean squared error in detection

rate across conditions between model and listener behavior was selected. A modified

hinge loss was then used to compute goodness-of-fit for each model: this loss function

penalized both incorrect model responses and correct responses close to threshold

(i.e., correct with low certainty), thus rewarding models with decision signals far from

threshold (i.e., correct with high certainty). Note that “correct” in this case is the

response from the individual subject being fit.

4.3 Results

4.3.1 Perceptual experiments

We conducted four experiments to probe the mechanisms behind predictive processing

along multiple dimensions in auditory perception: two psychophysics experiments

(experiments SP and TP) and two similarly structured electroencephalography (EEG)

experiments (experiments nSP and nTP, with ‘n’ denoting neural). Listeners were

asked to detect changes in the statistical properties of a sequence of complex sounds

varying along two perceptual features: in experiments SP and nSP, stimuli varied in

spatial location (S) and pitch (P), as denoted by the naming convention; in experiments
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Figure 4-2. Behavioral results for experiments SP and TP. Average change detection
performance (d′) is shown by changing feature (abscissa) and entropy of non-changing
feature (fill pattern). Error bars indicate 95% bootstrap confidence interval across subjects
(N=15 for both experiments).

TP and nTP, stimuli varied in timbre (T) and pitch (P). Changes could occur in one,

both, or none of the features (see Fig 4-1). Conditions were randomized, so listeners

did not know a priori at the beginning of each trial which feature was informative for

the task.

Detection performance improves with feature conjunction

Fig 4-2 shows detection performance in psychophysics experiments SP (left) and TP

(right). To establish whether listeners integrated information across features to perform

the change detection task, we compared single- and both-change conditions, with the

non-changing feature at low-entropy (excluding mid-entropy conditions, checkered

bars in Fig 4-2).

In experiment SP, an ANOVA with 1 within-subject factor (3 conditions) showed

strong significant differences between conditions (F (2, 28) = 12.07, p = 0.0002),
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with post-hoc paired t-tests confirming the effect between Both and each single-

change condition (Both vs. Pitch, t(14) = 6.12, p < 0.0001; Both vs. Spatial,

t(14) = 4.64, p = 0.0004). In addition, a more stringent test showed that for each

subject, performance in the Both condition was significantly better than the highest

of the two single-change conditions (Both vs. max(Pitch, Spatial), t(14) = 3.70,

p = 0.0024).

We found the same effects in experiment TP. The ANOVA showed strong differences

between change conditions (F (2, 28) = 23.74, p < 0.0001), with post-hoc paired t-tests

confirming the effect between Both and each single-change condition (Both vs. Pitch,

t(14) = 7.77, p < 0.0001; Both vs. Timbre, t(14) = 3.35, p = 0.0047). The more

stringent test also showed that each subject performed significantly better in the

Both condition compared to the maximum of the single-change conditions (Both vs.

max(Pitch, Timbre), t(14) = 3.01, p = 0.0093).

We replicated the same analysis for behavioral responses in the EEG experiments

nSP and nTP (not shown in figure). Listeners performed the same change-detection

task, with the only difference being the exclusion of the mid-entropy conditions

(checkered bars in Fig 4-1). We observed the same behavioral effects as above in the

EEG experiments: detection performance increased in the Both condition relative to

each of the single-change conditions (nSP: Both vs. max(Spatial, Pitch), t(17) = 4.86,

p = 0.00015; nTP: Both vs. max(Timbre, Pitch), t(17) = 3.29, p = 0.0043).

If listeners were processing each feature completely independently, we would expect

performance in the Both condition to be, at most, the maximum of the two single-

change conditions. Instead, the apparent increase in detection performance suggests

that listeners can flexibly integrate predictive information when corroborative evidence

across features is available.
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Higher entropy in uninformative feature increases false alarms but not

missed detections

In a second analysis of experiments SP and TP, we looked at whether the uninformative

(i.e., non-changing) feature could disrupt change detection in the informative (i.e.,

changing) feature. We compared performance in the single-change conditions when

the non-changing feature was low- vs. mid-entropy (excluding the Both condition,

striped bars in Fig 4-2).

In experiment SP, an ANOVA with 2 within-subject factors (2 changing feature

x 2 entropy of non-changing feature) showed a significant main effect of entropy

(F (1, 42) = 5.01, p = 0.031), and no effect of changing feature (F (1, 42) = 1.15,

p = 0.29) or interaction (F (1, 42) = 1.12, p = 0.30). Interestingly, post-hoc t-tests

showed that the decrease in performance was due to an increase in false alarms (FAs)

(Pitch/Spatial entropy: Low/Low vs. Low/Mid, t(14) = −7.44, p < 0.0001); Low/Low

vs. Mid/Low, t(14) = −2.48, p = 0.013) and not a decrease in hit-rates (same

ANOVA as above applied to hit-rates: Entropy F (1, 42) = 2.82, p = 0.10, Feature

F (1, 42) = 0.44, p = 0.51, Interaction F (1, 42) = 0.55, p = 0.46).

We found similar effects in experiment TP. The ANOVA showed a significant main

effect of entropy (F (1, 42) = 8.00, p = 0.0071) and no interaction effect (F (1, 42) =

0.28, p = 0.60), but it did show a main effect of changing feature (F (1, 42) = 32.03,

p < 0.0001). This difference between the Pitch and Timbre conditions likely reflects

a difference in task difficulty due to stimulus design, rather than a persistent effect

due to the features themselves or an interaction between the two. As for the main

effect of non-changing entropy, post-hoc t-tests again showed the decrease in detection

performance was due to an increase in FAs (Pitch/Timbre entropy: Low/Low vs.

Low/Mid, t(14) = −5.91, p < 0.0001); Low/Low vs. Mid/Low, t(14) = −3.93,
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p = 0.00075) and not a decrease in hit-rates with higher entropy (same ANOVA as

above applied to hit-rates: Entropy F (1, 42) = 3.5, p = 0.068, Feature F (1, 42) = 29.48,

p < 0.0001, Interaction F (1, 42) = 1.75, p = 0.19).

The uninformative feature did in fact affect overall detection performance, where

higher entropy led to increased FAs. However, as hit-rates did not decrease as well,

listeners’ ability to track statistics in the informative feature was not disrupted by

the uninformative feature, even when the identity of informative and uninformative

feature changed from trial to trial. This result suggests that statistics are collected

independently along each feature, and integration across features occurs after statistical

estimates have been formed.

4.3.2 Computational model

Behavioral results so far demonstrate that listeners collect statistics independently

along multiple features and then integrate across features at some later processing

stage, begging the question of how this combination occurs. To answer this, we

formulate a model for multidimensional predictive processing to appraise different

hypotheses for the underlying computational mechanism that could lead to listener

behavior.

As a starting point, we use the Dynamic Regularity Extraction (D-REX) model

described in Chapter 2, which was initially formulated for statistical inference along a

single feature [49]. To make specific hypotheses for how predictive processing operates

along multiple features, we constructed model variants that differ in: (i) the statistics

collected along each feature, (ii) the processing stage at which integration occurs, and

(iii) the function or operator used to combine across features. Source code is available

at: https://engineering.jhu.edu/lcap/downloads.
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Figure 4-3. Multidimensional model schematic. a) Building blocks of the model for
predictive processing along a single dimension. b) Illustration of potential variants of the
model for statistical inference along multiple dimensions. Red indicates aspects of the
model that differed by variant: statistics collected along each dimension (D ∈ {1, 2}),
early- vs. late-stage integration, and the operator used in integration (MAX, MIN, AVG,
wAVG). Summary of model variants in red boxes at bottom.

In the next section, we give a brief description of how the D-REX model was

used to formulate hypotheses for the computational mechanisms behind predictive

processing of multi-feature sounds.

Building blocks of statistical inference

The D-REX model makes sequential predictions of the next input xt+1 given all

previously observed inputs x1, x2, . . . , xt. In the present study, the input {xt}t∈Z+ is a

sequence of pitches, spatial locations, or spectral centroids (timbre). This sensory input

is assumed to be successively drawn from a multivariate Gaussian distribution with

unknown parameters, as this structure fits a wide range of natural and experimental

phenomena [14, 16, 45, 115–117]. Over time, the model collects sufficient statistics θ̂

from observed inputs to estimate the unknown distribution parameters [43].

The D-REX model has two main processing stages: a prediction stage and an

update stage. Fig 4-3a illustrates these main processing stages for a single time-step.
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Upon observing the new input xt+1, the model first computes the set of predictions

P⃗ t using the collected statistics Θ⃗t across context hypotheses (see “Predict”). The

model then incrementally updates two quantities (see “Update”): the beliefs B⃗t are

updated with new evidence from P⃗ t based on how well xt+1 was predicted under each

context hypothesis, and the set of statistics Θ⃗t are updated with the newly observed

input xt+1. These are in turn used for predicting the subsequent input at time t + 2,

and so on.

In this work, we consider two outputs from the model that reflect different levels

of uncertainty and dynamics in the input:

• Surprisal is a local measure of probabilistic mismatch between the model predic-

tion and the just-observed input:

St+1 = − logP(xt+1|x1:t)

where St+1 is the surprisal at time t + 1, based on the predictive probability of

xt+1..

• Belief Change is a global measure of statistical change in the input sequence

derived from the context beliefs. If the new input xt+1 is no longer well predicted

using the beliefs B⃗t (e.g., after a change in underlying statistics), the updated

beliefs B⃗t+1 shift to reflect the change in context inferred by the model. The

belief change δt measures the distance between these two posterior distributions

before and after xt+1 is observed:

δt = DKL(B⃗t || B⃗t+1)

where DKL(·||·) is the Kullback-Leibler divergence. This measure ultimately
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reflects dynamics in the global statistics of the observed sequence. In contrast

to the change probability defined in Chapter 3, this measure of change does not

assume a single change in the input observations.

We derived a change detection response from the model that is analogous to listener

behavioral responses by applying a detection threshold τ to the maximal belief change

δt:

Model Response = max
t

(δt) ≥ τ

We use this response to compare the model to listeners’ behavioral responses. In

addition, we use the moment when this maximal belief change occurs, along with

surprisal, to examine the neural response related to different dynamics in the stimuli.

Modeling statistical inference along multiple dimensions

Now, let the input sequence xt be multidimensional with two components along

separate dimensions, e.g., pitch and spatial location: xt = {xP
t , xS

t }. The extension of

the D-REX model to multidimensional inputs is not trivial. In this study, we use the

D-REX model as a springboard to entertain multiple hypotheses about how statistical

inference operates across multiple dimensions. Fig 4-3b illustrates three attributes of

the model we explore (indicated in red):

• Statistics D. Listeners potentially collect different statistics along different

dimensions. In the model, sufficient statistics are specified by the D parameter,

the dimensionality of the Gaussian distribution, or the temporal dependence,

assumed by the model. In the proposed multidimensional model, there are two

D parameters, one for each feature (see “Predict” in Fig 4-3b). We examine

model variants with D = 1 (no temporal dependence) and D = 2 to test what

statistics are tracked along each feature.

83



CHAPTER 4. INFERENCE ALONG MULTIPLE DIMENSIONS

• Integration stage. Building on previous neural evidence for independent predic-

tions along different dimensions, the model generates predictions separately along

each feature. We examine two possible stages for combining across dimensions

after the prediction: Early-stage integration (Fig 4-3-top), where predictions

are combined across features before updating context beliefs, and Late-stage

integration (Fig 4-3-bottom), where the belief change δt is computed separately

for each feature and combined before the final decision. These two alternatives

represent whether the context window for estimating statistics is inferred jointly

across features (Early) or independently for each feature (Late).

• Integration operator f(·, ·). We test four different operators for how predictive

information is combined across features: two linear operators, average (AVG)

and weighted average (wAVG), where the relative weighting between features is

adapted to each listener; and two non-linear operators, minimum (MIN) and

maximum (MAX). These operators are applied at the processing level specified

by the integration stage.

We examine models with each permutation of these attributes, yielding 32 variants

of the model (2 D x 2 D x 2 stage x 4 operator). In the following section, we examine

which variant best replicates human behavior.

Model comparison to listener behavior

We fit parameters of each model to individual listener behavior in Experiments

nSP and nTP. In addition to the decision threshold τ , there are two parameters of

the model that reflect neural constraints individual to each listener: the memory

parameter M sets an upper bound on the context window (and the number of context

hypotheses), and the observation noise parameter N sets a lower bound on prediction
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uncertainty, adding independent Gaussian noise with variance N to the predictions.

These parameters represent plausible constraints on perception known to vary across

individuals: the former representing working memory capacity [51, 52] and the latter,

perceptual fidelity [53, 54].

Models with early-stage integration have a single memory parameter, due to shared

context beliefs across features; models with late-stage integration have two memory

parameters (one for each feature). All models have two observation noise parameters

and a single decision threshold. For each model and listener, these parameters were

fit using a grid search of the parameter space, where change detection responses

from the model were compared against the same responses from listeners, and a loss

function was used to determine the goodness-of-fit of each model (see SI-Fig S9 for

examples of belief change outputs across model variants). Note that in this comparison,

ground truth is not whether there was a change in the stimulus itself, but whether

the individual listener detected a change.

Fig 4-4 shows the loss by model (rows) and subject (columns) after the fitting

procedure for Experiments nSP and nTP. For each experiment, models are ordered

by decreasing average loss (top row, minimum average loss) and subjects are ordered

by increasing detection performance d′ (right column, highest d′). Model variants are

labeled according to the configuration illustrated in Fig 4-3b: stage_DXX_operator,

where XX specifies the statistics (1 or 2) used for each feature. For example, in

Experiment nSP the Early_D12_MAX model uses early-stage integration, D = 1 for

Pitch, D = 2 for Spatial, and the MAX operator for integration.

The column to the right of each fit matrix in Fig 4-4 shows the average loss across

all subjects. The model labels reveal high agreement in the top-performing models

fit across Experiment nSP and nTP—in fact, the ordering of the top 11 models is
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Figure 4-4. Model comparison for Experiments nSP (left) and nTP (right). Each model
variant was fit to individual subjects and the resulting loss is displayed by color. Each
row is a model variant (ordered by average loss) and each column is a subject (ordered
by d′). Model names to the left of each image indicate integration stage, statistics (D)
collected for each feature, and integration operator. The two best models, Late_D22_MAX
and Early_D22_MAX, were compared using a t-test. (N=18 in both experiments)
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identical across experiments. Notably, model Late_D22_MAX yields the best fit on

average across all subjects for both experiments. Late_D22_MAX has a better fit than all

other variants of the model. Specifically, Late_D22_MAX has a significantly lower loss

(i.e., better fit) across subjects when compared to the next best model, Early_D22_MIN,

in both experiments (nSP: t17 = −3.82, p = 0.0014; nTP: t17 = −3.63, p = 0.0021).

With the poorer fitting models in the lower half of Fig 4-4, model variants with

Early&MAX or Late&MIN have a fit loss near chance. This is not surprising given that

both are less sensitive to changes: the Early&MAX models only detect changes when

both features violate prediction, and similarly the Late&MIN models require the change

signal of both features to cross threshold. Neither of these types of models fit listener

behavior well. Additionally, models with lower-order statistics (i.e., D = 1) in one or

both features tend to have poorer fits (and higher loss).

Together, these results suggest that with both spectral and spatial features, listeners

track higher-order statistics separately along each feature and integrate at a later stage,

making a non-linear change decision based on the feature with the most evidence

for change. In later analyses, we use this fitted model to guide analysis of neural

responses.

Model interpretation of individual differences

Looking closer at variability in model loss across individuals in Fig 4-4, some patterns

emerge across experiments nSP and nTP. For better-performing subjects (d′ > 1, right

side of each image), there is high agreement in loss across all model variants. For

poorer-performing subjects (left side of each image), there is more variability in model

fit across subjects, with some model variants with higher overall loss fitting individual

subjects quite well. For example, in Experiment nSP (Fig 4-4-left) the Late_D12_MAX

model has loss near chance for subjects with d′ > 1, but for subjects with d′ < 1,
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loss is near zero. This suggests that variability in task performance across subjects

could be due to different listening strategies—these could relate to inherent ability for

tracking statistics of sound sequences or differences in task understanding.

We can also examine how individual differences are explained by the model

parameters fit to each subject. Using the Late_D22_MAX model, the “best” overall

model, we tested for correspondence between the four perceptual parameters (memory

and observation noise for each feature) and detection performance across listeners. In

experiment nSP, a multiple linear regression explained 82% of the variance in d′ and

showed strongly significant correlation between both memory parameters and detection

performance (MS:, p = 0.0070, MP : p = 0.0004) and no significant correlation between

the observation noise parameter and performance in either feature (NS:, p = 0.82, NP :

p = 0.33). We see similar results in experiment nTP, with the perceptual parameters

accounting for 81% of the variance in d′ and significant correlation between the spatial

memory parameter with weaker significance in the pitch memory parameter (MT :

p = 0.0009, MP : p = 0.0975, NT : p = 0.87, NP : p = 0.54). Fig 4-5 shows the fitted

memory parameters for each feature plotted against overall d′ for experiment nSP

(left) and nTP (right), along with the multiple linear regression. This result suggests

that the differences in behavior across listeners in experiment nSP and nTP could

be due to differences in memory capacity rather than difference in perceptual fidelity

(as represented by observation noise), where better-performing subjects use higher

memory capacity for statistical estimation in each feature.

We additionally tested for correlations between memory parameters across feature.

Linear regression showed significant correlations in memory across features in both

experiments (nSP: ρ = 0.53, p = 0.0232; nTP: ρ = 0.61, p = 0.0076). This result holds

implications for the independence of neural resources used in statistical predictive
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Figure 4-5. Memory parameters of the Late_D22_MAX model fit to individual
subjects in Experiments nSP (left) and nTP (right). Fitted memory parameters plotted
against overall detection performance d′, along with multiple linear regression fit (R2 at
bottom of each plot). Observation noise parameters (not shown) did not have significant
correlation with d′.

processing: While predictions occur separately across features, this suggests that the

working memory capacity for statistical estimation is linked across features.

4.3.3 Electroencephalography

The model simulates predictive processing moment-by-moment, giving a window into

the underlying processes that cannot be observed through behavior. In this section,

we use the Late_D22_MAX model to guide analysis of neural responses in experiments

nSP and nTP.

Two model outputs were used to specify epochs for trial-averaging: surprisal, the

local measure of deviance between each observation and its prediction; and maximal

belief change, the global measure of melody-level statistics when the largest change in

beliefs occurs in each trial. Note that there are distinct surprisal responses for each

feature, e.g., each tone in the melody elicits a surprisal in pitch and a surprisal in
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spatial location from the model. In comparison, the maximal belief change occurs once

in each trial and reflects more global statistical processing of the stimulus sequence.

Neural response magnitude increases with local surprisal

We used model surprisal to perform an oddball-like analysis of neural responses. While

this type of analysis typically relies on deterministic patterns to define “deviant” and

“standard” events, without such structure we use surprisal from the model to guide

identification of tones that fit predictions well and those that do not. First, we use an

overall measure of surprisal to define “deviant” and “standard” by summing surprisal

across features, e.g., St = SP
t + SS

t , where SP
t and SS

t are the surprisal from pitch

and spatial location, respectively. We compared the neural response time-locked to

high-surprisal tones to the response time-locked to low-surprisal tones, where high

and low were defined as the top and bottom 5%, respectively, for each subject. In this

analysis, we averaged the EEG response across fronto-central electrodes typically used

in auditory analyses (according to 10/20 system: Cz, C1, C2, FCz, FC1, FC1, Fz, F1,

F2).

Fig 4-6a shows the grand-average response to high- and low-surprisal tones along

with their difference wave for experiments nSP and nTP. High-surprisal tones elicit a

larger magnitude response relative to low-surprisal tones, as can be seen in deviations

in the difference wave from 0 µV at typical N1 and P2 time windows. Topography

in Fig 4-6a shows amplitude of differential response in the 80–150 ms window after

tone onset, along with channels used in this analysis. Note the oscillations in the

grand-average response are entrained to tone onsets (every 116 ms) – the response to

high surprisal tones augments this obligatory onset response.

To determine if there is a linear relationship between overall surprisal St and the

neural response, we took advantage of surprisal as a continuous measure of probabilistic
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deviance to bin tones across all trials into 40 equal-sized bins by overall surprisal.

We then averaged the neural response within each bin across subjects and across

tone epochs, and extracted the neural response magnitude 80-150 ms after tone onset

(corresponding to typical N1/MMN time window, overlaid on difference wave in Fig

4-6a). Fig 4-6b shows EEG magnitude plotted against surprisal in each bin. Linear

regression showed a strongly significant increase in EEG magnitude with increasing

surprisal in both experiments with high levels of explained variance (nSP: R2 = 0.62,

p < 0.0001; nTP: R2 = 0.54, p < 0.0001), showing that the neural response not only

increases in magnitude at the most surprising moments, but increases proportionally

with the level of surprisal.

We examined this linear relationship further in a similar analysis using the feature-

specific surprisal (e.g., SP
t and SS

t ). For each subject, tone epochs were binned

into 128 equal-sized bins in the 2-D space spanned by surprisal along each feature,

and the neural response was averaged within each bin over epochs and subjects.

Fig 4-6c displays EEG magnitude for each bin at the average surprisal along each

feature. Multiple linear regression shows a strongly significant correlation between

EEG magnitude and surprisal in both experiments (nSP: R2 = 0.41, p < 0.0001; nTP:

R2 = 0.38, p < 0.0001) with EEG magnitude significantly increasing with surprisal

along both features (nSP: Pitch surprisal p = 0.0124, Spatial surprisal p < 0.0001;

nTP: Pitch surprisal p = 0.0272, Timbre surprisal p < 0.0001).

Going beyond previous work showing linear superposition of deviance responses

in oddball paradigms (such as in [94]), these results show that the neural response

magnitude increases proportionally with the level of surprisal along each feature, which

then combine linearly in the EEG response recorded at the scalp. This effect cannot

be measured from stimulus properties alone nor by behavior, requiring a model to
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Figure 4-6. Surprisal response in experiment nSP and nTP. a) Oddball-like analysis
contrasting neural response to high-surprisal tones (top 5%) with response to low-surprisal
tones (bottom 5%), where overall surprisal is summed across features (e.g., SP

t + ST
t ).

Difference wave (high-low) shows 95% confidence interval across subjects. b) EEG
magnitude (80–150 ms) in sub-averages of tone epochs binned by overall surprisal (abscissa).
R2 from linear regression. c) EEG magnitude (80–150 ms) binned by feature-specific
surprisal in both features (horizontal axes). Gray points on horizontal axis show position
of each point in surprisal-space. R2 from multiple linear regression.

estimate the local surprisal of each tone along each feature given its context.

Distinct responses to local surprisal and global statistical change

We next examined neural responses aligned to high surprisal events alongside responses

aligned to the maximal belief change, where the former represents local prediction

mismatch and the latter represents global statistical change in the stimulus. High

surprisal is again defined as tones with overall surprisal (e.g., St = SP
t + SS

t ) in the

top 5%. Maximal belief change is the moment when the belief change (δt) reaches its

maximum across the melody trial.
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Fig 4-7a (top) shows an illustration of this analysis with an example stimulus and

its model outputs, surprisal St and belief change δt. Dotted lines show moments used

to align epochs for each type of event. High surprisal events can occur at multiple

points within the same melody stimulus, while there is only one maximal belief change.

Note that when an epoch qualified as both high surprisal and maximal belief change,

it was excluded from the high surprisal events to keep the epochs in each average

response distinct. For each subject, the neural response was averaged for each aligning

event (i.e., high surprisal and maximal belief change) across epochs from all melody

trials.

Below the illustration, Fig 4-7a shows the grand-average neural response across

subjects for all 64 channels time-locked to the two aligning events, high surprisal

(left) and maximal belief change (right), in experiments nSP (top) and nTP (bottom).

Topography to the right of each grand average show two responses that emerge in the

highlighted time-windows after alignment: an early fronto-central negativity (FCN)

with a latency of 80–150 ms (the same surprisal response examined above), and a later

(and much slower) centro-parietal positivity (CPP) with a latency of 300–800 ms.

To determine whether the neural response is significantly larger in these two

time windows, we compared the cumulative RMS amplitude of the neural response

to baseline amplitudes in windows at the same cyclic position relative to neural

entrainment (-152 to -82 ms and -630 to -130 ms for the early and late windows,

respectively). In each time window, 10 channels with the largest magnitude in the

grand average (5 with positive polarity, 5 with negative polarity) were selected for

within-subjects analysis; selected channels for each response are highlighted in the

topography in Fig 4-7a. Fig 4-7b shows dB amplitude in experiments nSP (left) and

nTP (right). In both experiments, the neural response amplitude increased significantly
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in the early window after high surprisal tones (nSP: t17 = 3.88, p = 0.0012; nTP:

t17 = 2.45, p = 0.0253) and after the maximal belief change (nSP: t17 = 2.93,

p = 0.0093; nTP: t17 = 4.86, p = 0.0001). Note that maximal belief change often

coincides with high surprisal (as illustrated in the top of Fig 4-7), so this result is

not altogether “surprising”. However, in the later window, the neural response only

significantly increased after maximal belief change (nSP: t17 = 3.02, p = 0.0076; nTP:

t17 = 4.98, p = 0.0001), with no significant increase in amplitude after other high

surprisal moments in both experiments (nSP: t17 = 1.05, p = 0.31; nTP: t17 = −0.43,

p = 0.67).

Finally, we examined the relationship between these effects and behavioral perfor-

mance in the change detection task in experiments nSP and nTP. Fig 4-7c shows the

overall d′ for each subject (vertical axis) plotted against the neural response amplitude

(horizontal axis) in each time window (by row) at each aligning event (by column).

Linear regression analysis showed no significant correlation between neural responses

and behavior in the early time window at either aligning event. At the maximal

belief change, however, correlations between the neural response amplitude in the

late time window (i.e., the CPP response) and behavior is significant in experiment

nSP (R2 = 0.2, p = 0.036) and marginally significant in experiment nTP (R2 = 0.12,

p = 0.086).

Together, these results suggest distinct underlying neural computations leading

to the FCN and CPP effects. The FCN effect is elicited by any high surprisal

event. Moments of maximal belief change are a subset of these events, where incoming

observations no longer fit with current statistical estimates, resulting in poor predictions

and higher surprisal. The surprisal response, as shown in the previous analysis, is

elicited independently along each feature and combines linearly for multidimensional
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sounds. The CPP effect, on the other hand, occurs only at the maximal belief change,

suggesting this response relates to global contextual processing after integrating non-

linearly across features. Additionally, this CPP effect is weaker for poorer performing

subjects, possibly reflecting individual differences in integration strategies or memory

capacity for statistical estimation.

4.4 Discussion

Sound sources in natural environments vary along multiple acoustic dimensions,

yet how the brain integrates these features into a coherent auditory object is an

open question. Our approach combined psychophysics, computational modeling, and

EEG to probe the mechanisms behind feature integration in predictive processing.

Importantly, we used a stochastic change detection paradigm to approximate the

challenges and uncertainty encountered in natural environments, where regularities

emerge at unknown times and along unknown perceptual dimensions.

Through behavioral results, we demonstrated that listeners have access to a joint

representation to perform the stochastic change detection task, flexibly combining

evidence for statistical change across multiple features. To illuminate how this

joint representation is constructed, we employed a computational model grounded in

Bayesian accounts of statistical predictive coding in the brain [23, 37, 38, 41, 64]. This

model embodies several theoretical principles of predictive processing: that the brain

maps sensory inputs onto compact summary statistics [21], that the brain entertains

multiple hypotheses or interpretations of sensory information [118], and that the brain

incrementally updates its predictions over time based on evidence from new inputs

[119]. The D-REX model and its multifeature extension presented above represent

a computational instantiation of these theoretical principles which can be used to
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Figure 4-7. Multiplexed neural responses aligned to model outputs. Illustration of example
stimulus with model outputs above: moments of high surprisal and maximal surprisal
(black=high) used to align epochs for time-averaging. a) Grand-average responses for
experiments nSP (top) and nTP (bottom). Shaded regions indicate two time windows of
interest, with topography to the right showing average response amplitude within each time
window at each channel relative to baseline. Highlighted channels used in b) for statistical
analysis. b) RMS amplitude in dB relative to baseline in each time window (color) at each
aligning event (horizontal axis). Error bars indicate 95% bootstrap confidence interval
across subjects. c) Response amplitude in each time window at each aligning event plotted
against detection performance (d′) across subjects.
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interpret experimental results.

We formulated multiple possible implementations for statistical prediction and

integration. Using experimental data to fit these model variants to each subject, our

analysis suggests that listeners independently collect higher-order statistics and infer

context along multiple dimensions, integrating across dimensions at a later stage. We

additionally used this “best” model to interpret variability in behavior across listeners,

where detection performance ranged from near chance to near ceiling. A high degree

of variability in listener behavior could be explained by the memory parameter of

the model, which represents working memory capacity used to estimate statistics

along each feature known to vary from person to person [51–53]. Interestingly, the

fitted memory parameters correlated across features, suggesting that listeners are

estimating statistics under the same neural resource constraints across dimensions.

Preliminary results relating established measures of working memory capacity to

statistical inference support this claim of shared memory across features (see Appendix

II).

An alternative interpretation from our approach is that variability in behavior

across participants is due to differing listening strategies or statistical representations

(D = 1 or 2), particularly for lower performing subjects. Worth noting is that the same

lower performing subjects (d′ < 1) also reveal weaker centro-parietal late activity in

response to maximal belief change of the melody which may underlie limited predictive

tracking or sluggish cross-feature integration of statistical beliefs. The lack of any

correlation between surprisal brain responses and perceptual performance (Fig. 4-7c)

argues against weaker deviance tracking at the level of individual features for weaker

performing subjects. In future work, these experiments could be more tailored to

tease apart the source of these individual differences using the model.
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It is clear from the neural responses that the brain does multiplex two types of

responses that can be defined in terms of predictive processing. The fronto-central

negativity (FCN) is an MMN-like response, having similar characteristics to the

response to deviants in oddball experiments[14, 91, 120]. Borrowing terminology from

the oddball paradigm, in our analysis we used the model to define “deviant” events in

our stochastic stimuli. These high surprisal events were followed by the FCN response

(changepoint or not), signifying a local, tone-level response due to mismatch between

the immediate sensory input and internal predictions. Furthermore, we found that

the response magnitude was proportional with surprisal in each feature, agreeing with

similar results in the literature using less stochastic stimuli [90, 91, 95], and show

evidence for linear combination across features in this early prediction-level response.

The centro-parietal positivity (CPP), on the other hand, is later, having similar

latency and topography to the P3b response, which has been linked to context updating

in working memory due to expectation violations [119, 121–123]. Additionally, in

contrast to the MMN response, the P3b is associated with changes in global regularities

encompassing higher-order statistics [124–126] and more complex stimuli [89]. Our

interpretation agrees with these previous results: the CPP effect follows maximal

changes in the context beliefs, the equivalent of context updating within the terminology

of our model, and these shifts reflect broader changes in the statistics of the melody

after integrating across features, rather than a response to a single tone or a single

feature.

Finally, all of our results, from behavior to modeling to EEG, were consistent

across two sets of experiments, each using a different combination of features. Where

in one set of experiments (SP and nSP) the features were spectral and spatial, the

second set (TP and nTP) used features that were both spectral in nature, countering
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the argument that these results were due to distinct what/where pathways in the brain

[127]. Instead, these results support a domain-general statistical predictive coding

machinery in the brain that operates in parallel along multiple perceptual features to

tackle the uncertainty present in complex environments.
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Conclusion

Faced with the uncertainty inherent in our ever-changing surroundings, the listening

brain effortlessly abstracts predictive structures embedded in sensory inputs, building

an internal representation of contextual information for efficiently processing future

inputs. Previous work has focused on the brain’s remarkable ability to extract patterns

from sounds over time, however such “template-matching” abilities have limited benefit

in the dynamics of real-world environments. In this dissertation, we investigated the

statistical inference processes employed in auditory perception in order to form a

more complete picture of the predictive mechanisms in the brain. We use perceptual

experiments to assess the statistical inference facility of human listeners employing

a paradigm that mimics the complexity of real-world listening. In combination,

we developed a computational model that provides a framework for understanding

the intervening processing stages that connect stochastic sensory inputs to listener

behavior.

Several main takeaways emerge from the behavioral results in the perceptual

experiments. First, it is clear that the brain collects higher-order statistics from
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sounds as they evolve over time, capturing the temporal dependence between sequential

sounds. In other words, the brain not only tracks the position and precision of sound

sources, but also their velocity as they move through feature-space. Additionally, we

confirmed this result with multiple features, where tracking occurs simultaneously

along multiple dimensions. Second, the brain flexibly integrates predictive information

across dimensions only when corroborative evidence exists; otherwise, the predictive

processes operate independently within each dimension. This is an important skill

for interpreting real-world environments, where dependencies between dimensions can

change over time. Third, the integration across features occurs in posterior beliefs,

rather than with the predictions themselves, aligning our results with previous findings

in the literature showing independent predictive processing across features.

The model adds additional interpretive heft to our experimental results, going

beyond what can be deduced from behavior alone. In all of our behavioral results, we

see high variability across listeners. This variability is explained by the perceptual

parameters of the model, suggesting behavioral differences can be traced to differences

in the underlying perceptual fidelity and/or memory capacity of each listener.

In addition to accounting for variability across listeners, the model counters the

trial-to-trial variability that unavoidably pops up in experimental paradigms involving

uncertainty. Rather than using properties of the stimuli themselves for time-locked

analysis of the neural response, the model provides a temporal anchor for aligning

trials in terms of the underlying predictive processes. This reveals responses in the

neural response that would otherwise be temporally smeared without the model. We

observe multiplexed neural responses reflecting different levels of predictive processing:

a local deviance response that scales with model surprisal and is elicited independently

along each feature, and a global response to statistical change corresponding to belief
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updating in the model. These two distinct responses shed light on the internal

predictive processes involved in making sense from complex, dynamic sounds.

The computational model that forms the backbone of experimental results presented

in this dissertation is by no means designed to apply to these experiments alone. The

D-REX model provides a general tool for studying predictive processing in audition.

We demonstrate its broad applicability to modeling the statistical structures present in

real-world sounds, and we showed that the same statistical processes can account for a

wide range of existing results in the predictive coding literature, providing a necessary

link between the controlled listening scenarios employed in perceptual research and

the messy real-world scenarios they represent.

Future work

This dissertation offers a first step in understanding how the brain robustly interprets

the acoustic environment, paving the way for many interesting avenues of further

study.

One obvious question raised by the perceptual experiments presented here is

whether attention is required for such statistical representations to form in the brain.

Using the computational model and similar electroencephalography experiments with

distracted listeners, we could see if the same neural signatures of statistical processing

outlined above persist without attention. This would determine whether statistical

representations automatically arise from bottom-up processes in the auditory hierarchy,

or if they require the spotlight of attention to form a more granular representation.

The model offers a starting point to explore the role of experience in perception.

As a simulated listener, the model can be used to investigate trial-to-trial learning

within an experiment, with individual differences in learning rates represented by
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parameters in the model. The model could also be used to investigate the effects

of long-term experience, such as musical experience, on statistical inference. For

example, do musicians collect more complex statistical representations compared to

non-musicians? Or does long-term experience modify prior expectations? Because

of the modularity and generality of the model, it can be extended under the same

framework to form new hypotheses for how experience is represented in long-term

memory.

Finally, all experimental results presented in this dissertation involved normal-

hearing listeners, but the same schemes could be used to investigate statistical inference

in hearing impaired listeners or listeners with other sensory processing difficulties.

This could lead to several clinical applications of this research: in diagnostics to assess

the statistical inference abilities of individual listeners, in therapies to improve these

abilities, or in signal processing algorithms to bootstrap the inference computations in

the brain, for example, by emphasizing surprising event for hearing impaired listeners

or, conversely, by dampening surprising events for listeners with sensory integration

difficulties, such as individuals with Autism Spectrum Disorder.

The road to studying how perception operates “in the wild” is long, but this

dissertation provides a step towards understanding the computations behind the

human brain’s ability to unravel the complexity of real-world acoustic environments,

and it lays the groundwork for future investigation in the perception of complex scenes.
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Appendix II

Statistical inference &
working memory

Introduction
In preliminary results from four experiments, we explored the relationship between statistical inference
(SI) and working memory (WM) in audition. SI ability was measured with the same fractal change
detection paradigm described in Chapters 3 and 4, wherein listeners are tasked with detecting
statistical changes along one or two dimensions. Listeners additionally performed one of two tasks to
measure WM capacity: an N-back task or a precision task. We then compared performance between
the SI task and WM task within the same subjects.

In experiments 1a and 1b, listeners performed SI and WM tasks along the pitch dimension. In
experiment 1a, listeners performed the N-back task to measure WM; in experiment 1b, listeners
performed the precision task. In experiments 2a and 2b, listeners performed SI and WM tasks along
both pitch and spatial dimensions. In experiment 2a, listeners performed the N-back task to measure
WM; in experiment 2b, listeners performed the precision task.

Data for experiments 1b and 2b were collected in-person; data for experiments 1a and 2a were
collected remotely over Mechanical Turk due to closures from COVID-19.

Methods
Participants
In experiment 1a, there were 166 participants; 63 participants were excluded from analysis because
their performance was at or below chance (d′ <= 0 in either task). In experiment 1b, there were
34 participants; 3 participants were excluded from analysis because of chance performance and 1
participant was excluded because of technical error in data collection. In experiment 2a, there were
104 participants; 37 participants were excluded from analysis because they had chance performance
in tasks along at least one feature. In experiment 2b, there were 35 participants; no subjects were
excluded from analysis.

All participants reported no history of hearing loss. Participants gave informed consent prior to
the experiment and were paid for their participants. All experimental procedures were approved by
the Johns Hopkins IRB.

Stimuli

SI task
Stimuli were fractal sequences of complex tones varying in pitch (experiment 1a, b) or in pitch and
spatial location (experiment 2a, b). Fractal sequences were sampled power-law noise, with the power
ß parameterizing entropy: as β decreases, entropy increase, with maximum entropy at β = 0 (i.e.,
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white noise).
Each complex tone was synthesized from a harmonic stack of sinusoids with frequencies at

integer multiples of the fundamental frequency, then high- and low-pass filtered at the same cutoff
frequency (1200 Hz) using fourth-order Butterworth filters. Pitch was manipulated by changing the
fundamental frequency [102]. For experiments 2a and b, spatial location was simulated by convolving
the complex tone with interpolated head-related impulse functions for the left and right ears at the
desired azimuthal position [112]. Pitches ranged from 208 to 588 Hz; spatial locations ranged from
-45 to 45 degrees azimuth relative to front-center of the head.

For each stimulus sequence, the entropy changed at the midpoint of the sequence. In experiments
1a and b, the entropy changed in pitch. In experiment 2a and b, the entropy changed in pitch,
in spatial location, or in both features. In all experiments, corresponding control conditions were
included with no change in entropy.

In experiment 1a, entropy always began with low entropy (β = 2.5) and increased at the midpoint
to one of three different levels (β = 1.5, 1, 0). The spatial location was held constant throughout at
0 degrees azimuth.

In experiment 1b, pitch entropy increased (β = 2.5 to β = 0) or decreased (β = 0 to β = 2.5) at
the midpoint, with corresponding control conditions at high (β = 0) and low (β = 2.5) entropy. The
spatial location was held constant throughout at 0 degrees azimuth.

In experiment 2a, entropy increased in either pitch or spatial location (β = 2.5 to β = 0), with
control conditions having constant entropy at ß=2.5. In the feature that was not changing, to add
small variations to the uninformative feature, the entropy was β = 2.5 but had a range equal to half
of the range used in the informative feature.

In expeirment 2b, entropy increased in pitch, in spatial location, or in both features simultaneously
(β = 2.5 to β = 0). In the control condition, both features had β = 2.5 for the entirety of the
stimulus.

All stimulus sequences were composed of 60 complex tones with total duration of 7 seconds.
Each tone had a duration of 100 ms with 10ms onset and offset ramps, and tones were presented at
8.6 Hz (116 ms inter-onset interval).

WM task
In the WM task, stimuli were comprised of complex tones synthesized similarly to the fractal
experiment. In the N-back task, sequences of 30 tones were presented with 3 second inter-onset
intervals. In the precision task, sequences of 1 to 3 tones were presented with 500 ms inter-onset
intervals. Tones were 100 ms in duration, and pitches spanned an octave from 247.5 to 495 Hz.

Procedure
In experiments 1a and 2a, data was collected remotely via Mechanical Turk using the jsPsych
javascript library [128] and custom HTML scripts. Listeners participated through their personal
computers using a web browser displayed in full-screen mode, and they were instructed to use
headphones. Audio playback loudness was calibrated to a comfortable level using a test stimulus, and
audibility was tested prior to the beginning of the experiment by asking listeners to type a spoken
number in a text box. Stimuli were synthesized at 44.1 kHz sampling and converted to MP3 format
for playback.

In experiments 1b and 2b, data was collected in-person in an anechoic chamber, where listeners
were seated in front of the presentation screen. Stimuli were synthesized on-the-fly at 44.1 kHz
sampling rate and presented at a comfortable listening level via over-ear headphones (Sennheiser HD
595) using PsychToolbox (psychtoolbox.org) and custom scripts in MATLAB (The Mathworks,
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Natick, MA).
All experiments were split into two sections for SI and WM tasks. The order of SI and WM tasks

was counterbalanced across subjects. All experiments were under 1 hour in duration. In experiments
2a and 2b, listeners performed the WM task separately for pitch and for spatial location.

SI task
In the SI task, listeners were presented with tone sequences and asked after each trial: “Did you
hear a change?”. Subjects responded via keyboard with “Y” and “N” keys. Prior to testing, listeners
completed a series of training trials, where feedback was given after each trial. In the testing blocks,
feedback was not given. Conditions were randomized in experiments 1a, 1b, and 2b. In experiment
2a, separate testing blocks were used for each feature to test detection performance in pitch and
in spatial location (i.e., within each block, the change in statistics occurred in a single feature). In
experiment 2b, listeners performed a single SI task, wherein the change in statistics could occur in
one or both features.

WM task
In experiments 1a and 2a, the WM task was an N-back task with 1-back and 2-back blocks. In
both types of blocks, listeners were presented with a sequence of 30 complex tones: in the 1-back
blocks, listeners were instructed to hit the “space-bar” on the keyboard when a tone matched the
previous tone; in the 2-back blocks (i.e., the task with higher load on working memory), listeners
were instructed to hit the “space-bar” on the keyboard when a tone matched the tone before the
previous tone. Listeners performed 3 blocks of each type interleaved, with the starting block (1-back
or 2-back) counterbalanced across subjects.

In experiment 1a, listeners performed the N-back WM task in pitch. In experiment 2a, listeners
performed the N-back WM task separately for complex tones varying in pitch and for noise bursts
varying in spatial location.

In experiments 1b and 2b, the WM was a precision task based on [47]. In this task, listeners
heard a sequence of 1 to 3 tones, and then they were asked to replicate one of the previously heard
tones using a slider. The working memory load was higher for longer sequences, as listeners have to
maintain all tones in the sequence in memory to successfully perform the task.

In experiment 1a, listeners performed the precision WM task in pitch. In experiment 2b, listeners
performed the precision WM task separately for complex tones varying in pitch and for noise bursts
varying in spatial location.

Data analysis
To determine the relationship between SI tasks and WM tasks, Spearman correlation was used to
test for statistical significance in monotonicity between overall task performance. In the N-back
(WM) and fractal change detection (SI) tasks, overall d’ was used to measure performance, which
incorporates both hit rates and false alarm rates across all conditions to measure listeners’ sensitivity.
In the precision (WM) task, the overall mean standard error between the target tone and the response
tone was used as a measure of task performance. In experiment 2b, because the fractal change
detection task was collected jointly across features, the SI task performance in the single-change
conditions is used for each feature (e.g., in pitch, WM task performance for pitch is compared to SI
task performance in the pitch-only change condition).
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Results
Figure II-1 shows the results from experiments 1a (left) and 1b (right), where SI and WM task
performance was measured in pitch. Each point corresponds to a single listener, with horizontal
position indicating SI task performance and vertical position indicating WM task performance. In
both experiments, there is a statistical significant correlation between both the N-back and the
precision WM tasks and the fractal change detection SI task, suggesting that the SI and WM tasks
are measuring the same neural mechanisms.

Figure II-2 shows the results from experiments 2a (left) and 2b (right), where SI and WM
performance was measured in pitch and in spatial location. Again, each point corresponds to a
single listener’s performance in the SI and WM tasks. Performance is shown separately for each
feature, with the top plots showing performance when pitch is varying, and the bottom plots showing
performance when spatial location is varying. In both experiment and in both features, correlations
in overall performance across tasks are statistical significant, again suggesting that the SI and WM
tasks are measuring the same neural mechanisms.

Finally, Figure II-3 examines the relationship between features within each task in experiments 2a
(left) and 2b (left). Top plots show SI task performance in both features and bottom plots show WM
task performance in both features. Each point corresponds to a single subject, where the horizontal
axis indicates performance in the task testing pitch, and the vertical indicates performance in the
task testing spatial location. Note that in the SI task in experiment 2b (Fig II-3b, top), hit-rates are
displayed for each feature, because d′ was not independently measures in each feature in the joint
SI task. Correlations across features suggest shared, domain-general neural resources were used to
perform each task.

Figure II-1. Results from experiments 1a (a) and 1b (b) comparing SI (x-axis) and WM
(y-axis) task performance in pitch. Spearman correlations displayed in lower right.

121



APPENDIX II. STATISTICAL INFERENCE & WORKING MEMORY

Figure II-2. Results from experiments 2a (a) and 2b (b) comparing SI (x-axis) and WM
(y-axis) task performance in pitch (top) and spatial location (bottom).
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Figure II-3. Results from experiments 2a (a) and 2b (b) comparing task performance
across features. Overall task performance shown for pitch (x-axis) and spatial location
(y-axis). Top plots show SI task performance, bottom plots show WM task performance
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Computer code

D-REX Model computer code downloaded from https://github.com/JHU-LCAP/DREX-model on
August 11, 2020. (GitHub commit: 742a1341947cda73d6de49c2c01c1452bd13711e)

1 function [out] = run_DREX_model(x, params)
2 % Usage: [out] = run_DREX_model(x, params)
3 %
4 % D−REX model for Dynamic statistical REgularity eXtraction
5
6 % Assumes observations come from an underlying probabilitity distribution
7 % (specified in params) with unknown parameters, builds robust predictions
8 % by collecting sufficient statistics and calculating beliefs across
9 % multiple context windows causally. Distributions currently supported:

10 % Gaussian, Log−Normal, Gaussian Mixture Model (GMM), Poisson. Gaussian and
11 % Log−Normal have options temporal dependence between inputs, GMM and
12 % Poisson assume independent inputs.
13 %
14 % NOTE: If input has multiple features (i.e., size(x,2)>1), predictions
15 % along each feature are multiplied before updating beliefs.
16 %
17 % ===INPUT===
18 % x input sequence of observations (dim: time x feature)
19 % params structure with model parameters (see below for more info)
20 %
21 % ===OUTPUT===
22 % out output structure with sequential model results (see below for more info

)
23 %
24 %
25 % * Params structure
26 % distribution Distribution choice: 'gaussian','lognormal','gmm', or 'poisoon' (

default='gaussian')
27 % D temporal dependence (or interval size for Poisson), integer (default

=1, 50 for Poisson),
28 % prior structure with priors for sufficient statistics (see below)
29 % hazard prior probability of change, scalar (constant) or vector (time−

varying) (default=0.01)
30 % obsnz observation noise for each feature, vector (default=0.0)
31 % memory maximum number of context hypotheses, integer (default=inf)
32 % maxhyp maximum number of simultaneous context hypotheses, integer (default=

inf)
33 %
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34 % * Priors structure, depends on distribution choice, for example for 'gaussian':
35 % Each field is a cell array with a cell for each feature
36 % mu{f} prior mean (size: D x 1)
37 % ss{f} prior sum of squares (size: D x D)
38 % n{f} prior observation count (size: 1 x 1)
39 % Note: same structure as output of function 'estimate_suffstat.m'
40 %
41 % * Output structure
42 % surprisal surprisal due to each observation in bits (dim: time x feature)
43 % context_beliefs posterior beliefs for context hypotheses (dim: context−boundary

x time)
44 % prediction_params parameters of predictive distribution at each time (dim: time

x feature)
45 %
46 % v3
47 % Benjamin Skerritt−Davis
48 % bsd@jhu.edu
49
50 [ntime, nfeature] = size(x);
51
52 if isfield(params,'changeprior')
53 error('changeprior −> hazard in params')
54 end
55
56 % Parameters
57 if ~isfield(params,'distribution'), distribution = 'gaussian'; else, distribution =

params.distribution; end
58 if ~isfield(params,'prior'), error('set prior'); else, prior = params.prior; end
59 if ~isfield(params,'hazard'), hazard = 0.01; else, hazard = params.hazard; end
60 if ~isfield(params,'D'), D = 1; else, D = params.D; end
61 if ~isfield(params,'obsnz'), obsnz = zeros(nfeature,1); else, obsnz = params.obsnz;

end
62 if ~isfield(params,'memory'), memory = inf; else, memory = params.memory; end
63 if ~isfield(params,'maxhyp'), maxhyp = inf; else, maxhyp = params.maxhyp; end
64 if ~isfield(params,'predscale'), predscale = 1e−3; else, predscale = params.

predscale; end
65
66 % check input and parameters match
67 if size(x,2) > size(x,1); error('input should be time x feature'); end
68 if size(x,1)==0 || numel(x)==0; error('input has zero length'); end
69 if nfeature ~= length(obsnz); error('obsnz and nfeature mismatch'); end
70 if ~strcmp(distribution, 'poisson') && any([prior.n{:}] < D); error('prior n''s must

all be >= D'); end
71 if isinf(memory) || memory > ntime+1; memory = ntime+1; end
72 if memory < 2; error('memory must be greater than 1'); end
73
74
75 % Distribution−specific parameters and parameter checks
76 switch distribution
77 case 'gmm'
78 % max number of components
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79 if ~isfield(params,'max_ncomp'), max_ncomp = 10; else, max_ncomp = params.
max_ncomp; end

80 % Thresh for creating new comp. Lower threshold means new inputs
81 % are more likely to be incorporated into existing components.
82 if ~isfield(params,'beta'), beta = 0.001; else, beta = params.beta; end
83 if D ~= 1
84 error('Temporal dependence not supported. Set D=1 for GMM distribution.');
85 end
86 case 'poisson'
87 % For Poisson distribution, D is the temporal interval into the past for

counting events
88 if ~isfield(params,'D'), D = 50; else, D = params.D; end
89 end
90
91 % If hazard rate is scalar (constant), vectorize
92 if numel(hazard)==1
93 hazard = hazard*ones(size(x,1),1);
94 end
95
96
97 %=== INITIALIZE ==========================================
98
99 % Initialize conditioning observations for D>1

100 cond_obs = nan(D−1,nfeature);
101
102 % Initialize output arrays
103 surprisal = zeros(ntime,nfeature); % Surprisal at each time for each feature
104 B = zeros(memory, ntime+1); % Beliefs, or context posterior, at each time (dim:

context_hypothesis x time)
105 B(1,1) = 1; % context_length=0 at time=0 (i.e., sequence begins at

first observation)
106 prediction_theta = cell(ntime,1);
107
108
109 % Initialize sufficient statistics with priors
110 suffstat = [];
111 for f = 1:nfeature
112 switch distribution
113 case 'gaussian'
114 try
115 % Initialize with NaNs
116 suffstat.n{f} = nan(memory,1); % obs count
117 suffstat.mu{f} = nan(D,memory); % mean
118 suffstat.ss{f} = nan(D,D,memory); % sum of squared deviations
119
120 % Initialize first hypothesis with prior
121 suffstat.n{f}(1) = prior.n{f};
122 suffstat.mu{f}(:,1) = prior.mu{f};
123 suffstat.ss{f}(:,:,1) = prior.ss{f};
124 catch err
125 getReport(err)
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126 error('Issue with prior and Gaussian sufficient statistics');
127 end
128 case 'lognormal'
129 try
130 % Initialize with NaNs
131 suffstat.n{f} = nan(memory,1); % obs count
132 suffstat.mu{f} = nan(D,memory); % mean
133 suffstat.ss{f} = nan(D,D,memory); % sum of squared deviations
134
135 % Initialize first hypothesis with prior
136 suffstat.n{f}(1) = prior.n{f};
137 suffstat.mu{f}(:,1) = prior.mu{f};
138 suffstat.ss{f}(:,:,1) = prior.ss{f};
139 catch err
140 getReport(err)
141 error('Issue with prior and Log−normal sufficient statistics');
142 end
143 case 'gmm'
144 try
145 % Initialize with NaNs
146 suffstat.k{f} = nan(memory, 1); % num of components
147 suffstat.n{f} = nan(memory, max_ncomp); % obs count
148 suffstat.mu{f} = nan(memory, max_ncomp); % mean
149 suffstat.sigma{f} = nan(memory, max_ncomp); % sum of squared deviations
150 suffstat.pi{f} = zeros(memory, max_ncomp); % component weight
151 suffstat.sp{f} = nan(memory, max_ncomp); % component likelihood
152
153 % Initialize first hyp with prior
154 suffstat.k{f}(1) = prior.k{f};
155 suffstat.n{f}(1,:) = prior.n{f};
156 suffstat.mu{f}(1,:) = prior.mu{f};
157 suffstat.sigma{f}(1,:) = prior.sigma{f};
158 suffstat.pi{f}(1,:) = prior.pi{f};
159 suffstat.sp{f}(1,:) = prior.sp{f};
160 catch err
161 getReport(err)
162 keyboard;
163 error('Issues with prior and GMM sufficient statistics');
164 end
165 case 'poisson'
166 try
167 % Initialize with NaNs
168 suffstat.n{f} = nan(memory,1); % obs count
169 suffstat.lambda{f} = nan(memory,1); % mean
170
171 % Initialize first hypothesis with prior
172 suffstat.n{f}(1) = prior.n{f};
173 suffstat.lambda{f}(1) = prior.lambda{f};
174 catch err
175 getReport(err)
176 error('Issues with prior and Poisson sufficient statistics');
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177 end
178 otherwise
179 error(['Unsupported distribution: ' distribution]);
180 end
181 end
182
183
184 % =================
185 % MAIN LOOP
186 % =================
187 for t = 1:ntime
188
189 % ==== OBSERVE: new input ======================================================
190 obs = x(t,:);
191
192 % ==== PREDICT: compute context−specific predictive probs of new input =========
193 switch distribution
194 case 'gaussian'
195 pred = predict_GAUSSIAN(obs, cond_obs, suffstat, B(:,t), D, obsnz,

predscale);
196 case 'lognormal'
197 pred = predict_LOGNORMAL(obs, cond_obs, suffstat, B(:,t), D, obsnz,

predscale);
198 case 'gmm'
199 pred = predict_GMM(obs, suffstat, B(:,t), obsnz, predscale);
200 case 'poisson'
201 pred = predict_POISSON(obs, cond_obs, suffstat, B(:,t), predscale);
202 otherwise
203 error(['Unsupported distribution: ' distribution]);
204 end
205
206 % Extra prediction info: expected value, error, predictive distribution
207 % params (for computing full predictive distribution, \Psi)
208 if isempty(pred)
209 prediction_theta{t} = prediction_theta{t−1};
210 pflds = fields(prediction_theta{t});
211 for f = 1:length(pflds)
212 prediction_theta{t}.(pflds{f})(end+1,:) = prediction_theta{t}.(pflds{f})(

end,:);
213 end
214 else
215 prediction_theta{t} = pred.ss;
216 end
217
218 % Calculate Surprisal
219 if isnan(obs) % no input, no surprisal
220 surprisal(t,:) = nan;
221 else
222 surprisal(t,:) = −1*log2(pred.prob'*B(1:min(t,memory),t));
223 end
224
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225 % ==== UPDATE context−beliefs with predictive probabilities ===========
226 % Combine prediction across features (i.e., probabilistic−AND across
227 % features) to update context beliefs
228 pp = [];
229 if ~isempty(pred)
230 pp = prod(pred.prob,2);
231 end
232 B = update_context_posterior(B, pp, hazard(t), t, maxhyp);
233
234
235 % ==== UPDATE sufficient statistics with new observation ==============
236 switch distribution
237 case 'gaussian'
238 [cond_obs, suffstat] = update_GAUSSIAN(obs, cond_obs, D, suffstat, B(:,t),

prior, obsnz);
239 case 'lognormal'
240 [cond_obs, suffstat] = update_LOGNORMAL(obs, cond_obs, D, suffstat, B(:,t),

prior, obsnz);
241 case 'gmm'
242 try
243 suffstat = update_GMM(obs, suffstat, pred, prior, obsnz, beta*predscale);
244 catch err
245 getReport(err)
246 keyboard;
247 end
248 case 'poisson'
249 [cond_obs, suffstat] = update_POISSON(obs, cond_obs, suffstat, B(:,t),

prior);
250 otherwise
251 error(['Unsupported distribution: ' distribution]);
252 end
253
254 end
255
256
257 % ========= OUTPUT ==========
258 out.distribution = distribution;
259 out.surprisal = surprisal;
260 out.context_beliefs = B;
261 out.prediction_params = prediction_theta;
262
263 end
264
265
266 %% *****************************************
267 % | SUB−FUNCTIONS |
268 % *****************************************
269
270 function R = update_context_posterior(R, pp, hazard, t, maxhyp)
271 % Update beliefs with predictive probabilities
272 % pp: predictive probabilities
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273 % hazard: hazard rate
274 % t: current time
275
276 memory = size(R,1);
277
278 % If no prediction, change prob is 0.
279 if isempty(pp)
280 R(1:min(t,memory−1), t+1) = R(1:min(t,memory−1), t); % Change prob
281 R(min(t+1,memory),t+1) = 0; % Growth prob
282 return;
283 end
284
285 try
286 if memory <= t
287 % Growth prob: P(c_t=1:t, x_t:t)
288 R(1:(memory−1),t+1) = pp(2:end) .* (1−hazard) .* R(2:memory,t);
289 R(1,t+1) = R(1,t+1) + pp(1) .* (1−hazard) .* R(1,t);
290 % Change prob: P(c_t=0, x_1:t)
291 R(memory,t+1) = sum(pp(1:end) .* hazard .* R(1:memory,t));
292 else
293 % Growth prob: P(c_t=1:t, x_t:t)
294 R(1:t,t+1) = pp .* (1−hazard) .* R(1:t,t);
295 % Change prob: P(c_t=0, x_1:t)
296 R(t+1,t+1) = sum(pp .* hazard .* R(1:t,t));
297 end
298 catch
299 keyboard;
300 end
301 % Check context posterior
302 if any(R(:) < 0)
303 disp('ERROR with context posterior');
304 keyboard;
305 end
306
307 % prune lowest prob context hypothesis if exdeeded maxhyp
308 hypidx = find(R(1:min(t,memory−1),t+1) > 0);
309 if maxhyp < inf && length(hypidx) >= maxhyp
310 [~,worsthypidx] = min(R(hypidx,t+1));
311 R(hypidx(worsthypidx),t+1) = 0;
312 end
313
314 % Normalize posterior to sum to 1
315 R(:,t+1) = R(:,t+1) / sum(R(:,t+1));
316
317 end
318
319 % =====================================================================
320 % DISTRIBUTION: GAUSSIAN
321 % =====================================================================
322
323 % ==== PREDICT for each context hypothesis ============================
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324 function p = predict_GAUSSIAN(obs, cond_obs, suffstat, beliefs, D, obsnz, scale)
325 % pred: vector of predictive probabilities
326 % condSS: conditional sufficient statistics
327
328 % Skip prediction for any hyps with belief=0
329 keephyp = find(beliefs > 0);
330
331 % If silent/missing observation, no prediction to make
332 if any(isnan(obs) | isempty(obs))
333 % NOTE: assumes observation silent/missing simultaneously for all
334 % features
335 p = [];
336 return;
337 end
338
339 nhyp = sum(~isnan(suffstat.n{1})); % number of hypotheses incl. ones with belief=0
340 nkeephyp = length(keephyp); % number of hypotheses with belief>0
341 nfeature = length(suffstat.n);
342 pred = zeros(nkeephyp,nfeature); % predictive probabilities of new observation
343
344 % sufficient statistics
345 muT = suffstat.mu;
346 ssT = suffstat.ss;
347 nT = suffstat.n;
348
349 % Loop over features, calc cond distribution and predictions for each context

hypotheses
350 nCond = zeros(nkeephyp,nfeature); % conditional count
351 muCond = zeros(nkeephyp,nfeature); % conditional mean
352 covCond = zeros(nkeephyp,nfeature); % conditional (co)variance
353
354 for f = 1:nfeature
355 % condition current observation on past d−1 observations
356 if D>1 && sum(isnan(cond_obs)) < length(cond_obs)
357 for hh = 1:nkeephyp
358 h = keephyp(hh);
359 sigmaJoint = ssT{f}(:,:,h)*(nT{f}(h)+1)/(nT{f}(h)*(nT{f}(h)−D+1));
360 muJoint = muT{f}(:,h);
361 nuJoint = nT{f}(h)−D+1;
362
363 devFromMean = cond_obs(:,f) − muJoint(1:D−1);
364 % Replace NaNs with 0 to marginalize over missing context
365 devFromMean(isnan(devFromMean)) = 0;
366
367 nCond(hh,f) = nuJoint+D−1;
368 z = sigmaJoint(D,1:D−1)/sigmaJoint(1:D−1,1:D−1);
369 muCond(hh,f) = muJoint(D) + z*devFromMean;
370 covCond(hh,f) = ((nuJoint + devFromMean'/sigmaJoint(1:D−1,1:D−1)*

devFromMean)/nCond(hh,f))*...
371 (sigmaJoint(D,D) − z*sigmaJoint(1:D−1,D));
372
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373 if any(~isreal(covCond) | ~isreal(muCond))
374 warning('ERROR with predictive probabilities')
375 keyboard;
376 end
377 end
378
379 else % D=1, no conditioning
380 for hh = 1:nkeephyp
381 h = keephyp(hh);
382 covCond(hh,f) = ssT{f}(1,1,h)*(nT{f}(h)+1)/(nT{f}(h)*(nT{f}(h)));
383 muCond(hh,f) = muT{f}(h);
384 nCond(hh,f) = nT{f}(h);
385 end
386 end
387 % Calculate predictive probability of new observation given each hypothesis
388 pred(:,f) = studentpdf(obs(f), muCond(:,f), covCond(:,f) + obsnz(f)^2, nCond(:,f)

)*scale;
389 end
390
391 % Put predictions back into array with prediction=0 for belief=0 hypotheses
392 condSS.mu = zeros(nhyp,nfeature);
393 condSS.mu(keephyp,:) = muCond;
394 condSS.cov = zeros(nhyp,nfeature);
395 condSS.cov(keephyp,:) = covCond;
396 condSS.n = zeros(nhyp,nfeature);
397 condSS.n(keephyp,:) = nCond;
398 tmp = pred;
399 pred = zeros(nhyp,nfeature);
400 pred(keephyp,:) = tmp;
401
402 % Prob ceiling at 1 (in case of variance << 1)
403 if any(pred > 1)
404 error('Predictive prob greater than one. Decrease predscale to combat this.');
405 end
406
407 % Check predictive probabilities
408 if any(isnan(pred) | ~isreal(pred))
409 warning('ERROR with predictive probabilities')
410 keyboard;
411 end
412
413 p = [];
414 p.prob = pred;
415 % beliefs = beliefs(1:length(condSS.mu))';
416 % p.expected = beliefs * condSS.mu;
417 % p.error = abs(p.expected − obs);
418 p.ss = condSS;
419
420 end
421
422 % ==== UPDATE sufficient statistics with new observation ==============
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423 function [cond_obs, suffstat] = update_GAUSSIAN(obs, cond_obs, D, suffstat, beliefs,
prior, obsnz)

424 % If prior==[], only update statistics.
425
426 nfeature = length(suffstat.n);
427 nhyp = sum(~isnan(suffstat.n{1}));
428 memory = length(suffstat.n{1});
429
430 % Skip update for any hyps with belief=0
431 keephyp = find(beliefs > 0);
432 nkeephyp = length(keephyp);
433
434 % Replace NaNs with 0s to marginalize over missing context
435 obs_w_context = [cond_obs; obs];
436 obs_w_context(isnan(obs_w_context)) = 0;
437
438 for f = 1:nfeature
439
440 % Update statistics, unless input obs is empty/missing
441 if ~any(isnan(obs) | isempty(obs))
442 n_update = suffstat.n{f}(keephyp) + 1;
443 mu_update = (repmat(suffstat.n{f}(keephyp),1,D)'.*suffstat.mu{f}(:,keephyp) +

repmat(obs_w_context(:,f),1,nkeephyp))./repmat(n_update,1,D)';
444
445 tmpcov = zeros(D,D,nkeephyp);
446 for hh = 1:nkeephyp
447 h = keephyp(hh);
448 tmpcov(:,:,hh) = ((obs_w_context(:,f)−suffstat.mu{f}(:,h))*(obs_w_context

(:,f)−suffstat.mu{f}(:,h))' + eye(D)*obsnz(f)^2);
449 end
450
451 suffstat.ss{f}(:,:,keephyp) = suffstat.ss{f}(:,:,keephyp) + tmpcov.*repmat(

shiftdim(suffstat.n{f}(keephyp)./n_update,−2),D,D,1);
452 suffstat.mu{f}(:,keephyp) = mu_update;
453 suffstat.n{f}(keephyp) = n_update;
454
455 % clear suffstats for hyps with beliefs=0
456 suffstat.ss{f}(:,:,~ismember(1:nhyp,keephyp)) = 0;
457 suffstat.mu{f}(:,~ismember(1:nhyp,keephyp)) = 0;
458 suffstat.n{f}(~ismember(1:nhyp,keephyp)) = 0;
459 end
460
461 % Concatenating new hypothesis
462 if ~isempty(prior)
463 if nhyp < memory
464 % add prior as newest hypothesis
465 suffstat.n{f}(nhyp+1) = prior.n{f};
466 suffstat.mu{f}(:,nhyp+1) = prior.mu{f};
467 suffstat.ss{f}(:,:,nhyp+1) = prior.ss{f};
468 else
469 % remove oldest hypothesis and add prior as newest hypothesis
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470 suffstat.n{f} = cat(1,suffstat.n{f}(2:end),prior.n{f});
471 suffstat.mu{f} = cat(2,suffstat.mu{f}(:,2:end), prior.mu{f});
472 suffstat.ss{f} = cat(3,suffstat.ss{f}(:,:,2:end), prior.ss{f});
473 end
474 end
475 end
476
477
478 % increment conditioning observations to include new observation
479 cond_obs = [cond_obs; obs];
480 cond_obs(1,:) = [];
481
482 end
483
484
485 % =====================================================================
486 % DISTRIBUTION: LOG−NORMAL
487 % =====================================================================
488
489 % ==== PREDICT for each context hypothesis ============================
490 function p = predict_LOGNORMAL(obs, cond_obs, suffstat, beliefs, D, obsnz, scale)
491 % pred: vector of predictive probabilities
492 % condSS: conditional sufficient statistics
493
494 % Take log of new observation and context
495 obs = log(obs);
496 cond_obs = log(cond_obs);
497
498 % Skip prediction for any hyps with belief=0
499 keephyp = find(beliefs > 0);
500
501 % If silent/missing observation, no prediction to make
502 if any(isnan(obs) | isempty(obs))
503 % NOTE: assumes observation silent/missing simultaneously for all
504 % features
505 p = [];
506 return;
507 end
508
509 nhyp = sum(~isnan(suffstat.n{1})); % number of hypotheses incl. ones with belief=0
510 nkeephyp = length(keephyp); % number of hypotheses with belief>0
511 nfeature = length(suffstat.n);
512 predprobs = zeros(nkeephyp,nfeature); % predictive probabilities of new observation
513
514 % sufficient statistics
515 muT = suffstat.mu;
516 ssT = suffstat.ss;
517 nT = suffstat.n;
518
519 % Loop over features, calc cond distribution and predictions for each context

hypotheses
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520 nCond = zeros(nkeephyp,nfeature); % conditional count
521 muCond = zeros(nkeephyp,nfeature); % conditional mean
522 covCond = zeros(nkeephyp,nfeature); % conditional (co)variance
523
524 for f = 1:nfeature
525 % condition current observation on past d−1 observations
526 if D>1 && sum(isnan(cond_obs)) < length(cond_obs)
527 for hh = 1:nkeephyp
528 h = keephyp(hh);
529 sigmaJoint = ssT{f}(:,:,h)*(nT{f}(h)+1)/(nT{f}(h)*(nT{f}(h)−D+1));
530 muJoint = muT{f}(:,h);
531 nuJoint = nT{f}(h)−D+1;
532
533 devFromMean = cond_obs(:,f) − muJoint(1:D−1);
534 % Replace NaNs with 0 to marginalize over missing context
535 devFromMean(isnan(devFromMean)) = 0;
536
537 nCond(hh,f) = nuJoint+D−1;
538 z = sigmaJoint(D,1:D−1)/sigmaJoint(1:D−1,1:D−1);
539 muCond(hh,f) = muJoint(D) + z*devFromMean;
540 covCond(hh,f) = ((nuJoint + devFromMean'/sigmaJoint(1:D−1,1:D−1)*

devFromMean)/nCond(hh,f))*...
541 (sigmaJoint(D,D) − z*sigmaJoint(1:D−1,D));
542 end
543
544 else % D=1, no conditioning
545 for hh = 1:nkeephyp
546 h = keephyp(hh);
547 covCond(hh,f) = ssT{f}(1,1,h)*(nT{f}(h)+1)/(nT{f}(h)*(nT{f}(h)));
548 muCond(hh,f) = muT{f}(h);
549 nCond(hh,f) = nT{f}(h);
550 end
551 end
552 % Calculate predictive probability of new observation given each hypothesis
553 predprobs(:,f) = studentpdf(obs(f), muCond(:,f), covCond(:,f) + obsnz(f)^2, nCond

(:,f)) * scale;
554 end
555
556 % Put predictions back into array with prediction=0 for belief=0 hypotheses
557 condSS.mu = zeros(nhyp,nfeature);
558 condSS.mu(keephyp,:) = muCond;
559 condSS.cov = zeros(nhyp,nfeature);
560 condSS.cov(keephyp,:) = covCond;
561 condSS.n = zeros(nhyp,nfeature);
562 condSS.n(keephyp,:) = nCond;
563 tmp = predprobs;
564 predprobs = zeros(nhyp,nfeature);
565 predprobs(keephyp,:) = tmp;
566
567
568 % Prob ceiling at 1 (in case of variance << 1)
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569 if any(predprobs > 1)
570 error('Predictive prob greater than one. Decrease predscale to combat this.');
571 end
572
573 % Check predictive probabilities
574 if any(isnan(predprobs) | ~isreal(predprobs))
575 warning('ERROR with predictive probabilities')
576 keyboard;
577 end
578
579 p = [];
580 p.prob = predprobs;
581 % p.expected = beliefs(1:length(condSS.mu))' * exp(condSS.mu+0.5*condSS.cov);
582 % p.error = abs(exp(p.expected) − exp(obs));
583 p.ss = condSS;
584 end
585
586 % ==== UPDATE sufficient statistics with new observation ==============
587 function [cond_obs, suffstat] = update_LOGNORMAL(obs, cond_obs, D, suffstat, beliefs,

prior, obsnz)
588 % If prior==[], only update statistics.
589
590 % Take log of new observation and context
591 origobs = obs;
592 origcontext = cond_obs;
593 obs = log(obs);
594 cond_obs = log(cond_obs);
595
596
597 nfeature = length(suffstat.n);
598 nhyp = sum(~isnan(suffstat.n{1}));
599 memory = length(suffstat.n{1});
600
601 % Skip update for any hyps with belief=0
602 keephyp = find(beliefs > 0);
603 nkeephyp = length(keephyp);
604
605 % Replace NaNs with 0s to marginalize over missing context
606 obs_w_context = [cond_obs; obs];
607 obs_w_context(isnan(obs_w_context)) = 0;
608
609 for f = 1:nfeature
610
611 % Update statistics, unless input obs is empty/missing
612 if ~any(isnan(obs) | isempty(obs))
613 n_update = suffstat.n{f}(keephyp) + 1;
614 mu_update = (repmat(suffstat.n{f}(keephyp),1,D)'.*suffstat.mu{f}(:,keephyp) +

repmat(obs_w_context(:,f),1,nkeephyp))./repmat(n_update,1,D)';
615
616 tmpcov = zeros(D,D,nkeephyp);
617 for hh = 1:nkeephyp
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618 h = keephyp(hh);
619 tmpcov(:,:,hh) = ((obs_w_context(:,f)−suffstat.mu{f}(:,h))*(obs_w_context

(:,f)−suffstat.mu{f}(:,h))' + eye(D)*obsnz(f)^2);
620 end
621
622 suffstat.ss{f}(:,:,keephyp) = suffstat.ss{f}(:,:,keephyp) + tmpcov.*repmat(

shiftdim(suffstat.n{f}(keephyp)./n_update,−2),D,D,1);
623 suffstat.mu{f}(:,keephyp) = mu_update;
624 suffstat.n{f}(keephyp) = n_update;
625
626 % clear suffstats for hyps with beliefs=0
627 suffstat.ss{f}(:,:,~ismember(1:nhyp,keephyp)) = 0;
628 suffstat.mu{f}(:,~ismember(1:nhyp,keephyp)) = 0;
629 suffstat.n{f}(~ismember(1:nhyp,keephyp)) = 0;
630 end
631
632 % Concatenating new hypothesis
633 if ~isempty(prior)
634 if nhyp < memory
635 % add prior as newest hypothesis
636 suffstat.n{f}(nhyp+1) = prior.n{f};
637 suffstat.mu{f}(:,nhyp+1) = prior.mu{f};
638 suffstat.ss{f}(:,:,nhyp+1) = prior.ss{f};
639 else
640 % remove oldest hypothesis and add prior as newest hypothesis
641 suffstat.n{f} = cat(1,suffstat.n{f}(2:end),prior.n{f});
642 suffstat.mu{f} = cat(2,suffstat.mu{f}(:,2:end), prior.mu{f});
643 suffstat.ss{f} = cat(3,suffstat.ss{f}(:,:,2:end), prior.ss{f});
644 end
645 end
646 end
647
648 % increment context to include new observation
649 cond_obs = [origcontext; origobs];
650 cond_obs(1,:) = [];
651
652 end
653
654 % =====================================================================
655 % DISTRIBUTION: GAUSSIAN MIXTURE MODEL (GMM)
656 % =====================================================================
657
658 % ==== PREDICT for each context hypothesis ============================
659 function p = predict_GMM(obs, suffstat, beliefs, obsnz, scale)
660 % pred: vector of predictive probabilities
661 % condSS: conditional sufficient statistics
662
663 % Skip prediction for any hyps with belief=0
664 keephyp = find(beliefs > 0);
665
666 % If silent/missing observation, no prediction to make
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667 if any(isnan(obs) | isempty(obs))
668 % NOTE: assumes observation silent/missing simultaneously for all
669 % features
670 p = [];
671 return;
672 end
673
674 nhyp = sum(~isnan(suffstat.k{1})); % number of hypotheses incl. ones with belief=0
675 nkeephyp = length(keephyp); % number of hypotheses with belief>0
676 nfeature = length(suffstat.n);
677 component_probs = cell(nfeature,1);
678 predprobs = zeros(nkeephyp,nfeature); % predictive probabilities of new observation
679
680 % sufficient statistics
681 muT = suffstat.mu;
682 sigmaT = suffstat.sigma;
683 spT = suffstat.sp;
684 piT = suffstat.pi;
685
686 for f = 1:nfeature
687 component_probs{f} = studentpdf(obs(f), muT{f}(keephyp,:), sigmaT{f}(keephyp,:)+

obsnz(f)^2, spT{f}(keephyp,:)) * scale; % dim: hypothesis x component
688 predprobs(:,f) = sum(component_probs{f} .* piT{f}(keephyp,:),2,'omitnan');
689 end
690
691 % Put predictions back into array with prediction=0 for belief=0 hypotheses
692 tmp = predprobs;
693 predprobs = zeros(nhyp,nfeature);
694 predprobs(keephyp,:) = tmp;
695
696 tmp = component_probs;
697 for f = 1:nfeature
698 component_probs{f} = zeros(nhyp,size(tmp{f},2));
699 component_probs{f}(keephyp,:) = tmp{f};
700 end
701
702 % Prob ceiling at 1 (in case of variance << 1)
703 if any(predprobs > 1)
704 error('A predictive prob is greater than one. Decrease predscale to combat this.'

);
705 end
706
707 % Check predictive probabilities
708 if any(isnan(predprobs) | ~isreal(predprobs))
709 warning('ERROR with predictive probabilities')
710 keyboard;
711 end
712
713 p = [];
714 p.prob = predprobs;
715 p.component_probs = component_probs;
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716 % p.expected = 0; %beliefs(1:length(condSS.mu))' * condSS.mu;
717 % p.error = 0; %abs(p.expected − obs);
718 p.ss = [];
719 flds = fields(suffstat);
720 for f = 1:nfeature
721 for fld = 1:length(flds)
722 p.ss.(flds{fld}){f} = suffstat.(flds{fld}){f}(1:nhyp,:);
723 end
724 end
725
726 end
727
728 % ==== UPDATE sufficient statistics with new observation ==============
729 function suffstat = update_GMM(obs, suffstat, pred, prior, obsnz, beta)
730 % If prior==[], only update statistics.
731
732
733 nfeature = length(suffstat.n);
734 memory = length(suffstat.n{1});
735
736 max_comp = size(suffstat.mu{1},2);
737
738 % TODO: Replace NaNs with 0s to marginalize over missing context
739
740 for f = 1:nfeature
741
742 % Update statistics, unless input obs is empty/missing
743 if ~any(isnan(obs) | isempty(obs))
744
745 % Create new component
746 nhyp = size(pred.prob,1);
747 try
748 create_comp = (max(pred.component_probs{f},[],2,'omitnan') < beta) & (

suffstat.k{f}(1:nhyp) < max_comp);
749 catch
750 keyboard;
751 end
752 % Update existing component components
753 % Calculate component likelihood given current observation
754 lik = suffstat.pi{f}(1:nhyp,:) .* pred.component_probs{f};
755 lik = lik ./ repmat(sum(lik,2,'omitnan'),1,size(lik,2));
756 for h = 1:nhyp
757 kh = suffstat.k{f}(h); % num of comps for current hypothesis
758 if create_comp(h)
759 % obs comes from new component with prob 1
760 lik(h,:) = 0;
761 lik(h,kh+1) = 1;
762 suffstat.sp{f}(h,kh+1) = 0;
763 suffstat.n{f}(h,kh+1) = 0;
764 suffstat.mu{f}(h,kh+1) = obs(f);
765 suffstat.sigma{f}(h,kh+1) = prior.sigma{f}(1);
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766 end
767 end
768
769 % Update likelihood accumulatos and priors
770 sp_update = suffstat.sp{f}(1:nhyp,:) + lik;
771 w = lik ./ sp_update; % updated weights for each component
772
773 % Update component means
774 mu_update = suffstat.mu{f}(1:nhyp,:) + w.*(obs(f) − suffstat.mu{f}(1:nhyp,:));
775
776 % Update component variance
777 sigma_update = suffstat.sigma{f}(1:nhyp,:) + w.*((obs(f) − suffstat.mu{f}(1:

nhyp,:)).*(obs(f)−mu_update) + obsnz(f)^2 − suffstat.sigma{f}(1:nhyp,:));
778
779 % Update component obs count
780 n_update = suffstat.n{f}(1:nhyp,:) + 1;
781
782 % Reset suff stats for new components
783 k_update = suffstat.k{f}(1:nhyp)+create_comp;
784 mu_update(create_comp, k_update(create_comp)) = obs(f);
785 sigma_update(create_comp, k_update(create_comp)) = prior.sigma{f}(1);
786
787 % Update component priors
788 pi_update = sp_update ./ repmat(sum(sp_update,2,'omitnan'),1,size(sp_update,2)

);
789
790
791 suffstat.k{f}(1:nhyp) = k_update;
792 suffstat.n{f}(1:nhyp,:) = n_update;
793 suffstat.mu{f}(1:nhyp,:) = mu_update;
794 suffstat.sigma{f}(1:nhyp,:) = sigma_update;
795 suffstat.pi{f}(1:nhyp,:) = pi_update;
796 suffstat.sp{f}(1:nhyp,:) = sp_update;
797
798
799 % Concatenating new hypothesis
800 if ~isempty(prior)
801
802 if nhyp == memory
803 % remove oldest hypothesis
804 suffstat.k{f} = suffstat.k{f}(2:end);
805 suffstat.n{f} = suffstat.n{f}(2:end,:);
806 suffstat.mu{f} = suffstat.mu{f}(2:end,:);
807 suffstat.sigma{f} = suffstat.sigma{f}(2:end,:);
808 suffstat.pi{f} = suffstat.pi{f}(2:end,:);
809 suffstat.sp{f} = suffstat.sp{f}(2:end,:);
810
811 nhyp = memory − 1;
812 end
813
814
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815 % add prior as newest hypothesis
816 suffstat.k{f}(nhyp+1) = prior.k{f};
817 suffstat.n{f}(nhyp+1,:) = prior.n{f};
818 suffstat.mu{f}(nhyp+1,:) = prior.mu{f};
819 suffstat.sigma{f}(nhyp+1,:) = prior.sigma{f};
820 suffstat.pi{f}(nhyp+1,:) = prior.pi{f};
821 suffstat.sp{f}(nhyp+1,:) = prior.sp{f};
822
823 end
824 end
825 end
826
827 end
828
829
830 % =====================================================================
831 % DISTRIBUTION: POISSON
832 % =====================================================================
833
834 % ==== PREDICT for each context hypothesis ============================
835 function p = predict_POISSON(obs, cond_obs, suffstat, beliefs, scale)
836 % pred: vector of predictive probabilities
837 % condSS: conditional sufficient statistics
838
839 % Skip prediction for any hyps with belief=0
840 keephyp = find(beliefs > 0);
841
842 % If silent/missing observation, no prediction to make
843 if any(isnan(obs) | isempty(obs))
844 % NOTE: assumes observation silent/missing simultaneously for all
845 % features
846 p = [];
847 return;
848 end
849
850 input = sum([cond_obs; obs],'omitnan');
851
852 nhyp = sum(~isnan(suffstat.n{1})); % number of hypotheses incl. ones with belief=0
853 nkeephyp = length(keephyp); % number of hypotheses with belief>0
854 nfeature = length(suffstat.n);
855 pred = zeros(nkeephyp,nfeature); % predictive probabilities of new observation
856
857 % sufficient statistics
858 lambdaT = suffstat.lambda;
859 nT = suffstat.n;
860
861 % Loop over features, calc cond distribution and predictions for each context

hypotheses
862 nCond = zeros(nkeephyp,nfeature); % conditional count
863 lambdaCond = zeros(nkeephyp,nfeature); % conditional mean
864
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865
866 % Calculate predictive probability of new observation given each hypothesis
867 for f = 1:nfeature
868 for hh = 1:nkeephyp
869 h = keephyp(hh);
870 lambdaCond(hh,f) = lambdaT{f}(h);
871 nCond(hh,f) = nT{f}(h);
872 end
873
874 pred(:,f) = poissonpdf(input(f), lambdaCond(:,f))*scale;
875 end
876
877 % Put predictions back into array with prediction=0 for belief=0 hypotheses
878 condSS.lambda = zeros(nhyp,nfeature);
879 condSS.lambda(keephyp,:) = lambdaCond;
880 condSS.n = zeros(nhyp,nfeature);
881 condSS.n(keephyp,:) = nCond;
882 tmp = pred;
883 pred = zeros(nhyp,nfeature);
884 pred(keephyp,:) = tmp;
885
886 % Prob ceiling at 1 (in case of variance << 1)
887 if any(pred > 1)
888 error('A predictive prob is greater than one. Decrease predscale to combat this.'

);
889 end
890
891 % Check predictive probabilities
892 if any(isnan(pred) | ~isreal(pred))
893 warning('ERROR with predictive probabilities')
894 keyboard;
895 end
896
897 p = [];
898 p.prob = pred;
899 beliefs = beliefs(1:length(condSS.lambda))';
900 % p.expected = beliefs * condSS.lambda;
901 % p.error = abs(p.expected − obs);
902 p.ss = condSS;
903
904 end
905
906
907 % ==== UPDATE sufficient statistics with new observation ==============
908 function [cond_obs, suffstat] = update_POISSON(obs, cond_obs, suffstat, beliefs,

prior)
909 % If prior==[], only update statistics.
910
911 nfeature = length(suffstat.n);
912 nhyp = sum(~isnan(suffstat.n{1}));
913 memory = length(suffstat.n{1});
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914
915 % Skip update for any hyps with belief=0
916 keephyp = find(beliefs > 0);
917 nkeephyp = length(keephyp);
918
919 % Replace NaNs with 0s to marginalize over missing context
920 obs_w_context = [cond_obs; obs];
921 obs_w_context(isnan(obs_w_context)) = 0;
922
923 for f = 1:nfeature
924
925 % Update statistics, unless input obs is empty/missing
926 if ~any(isnan(obs) | isempty(obs))
927
928 new_lambda = sum(obs_w_context(:,f));
929
930 n_update = suffstat.n{f}(keephyp) + 1;
931 lambda_update = (suffstat.n{f}(keephyp).*suffstat.lambda{f}(keephyp) + repmat(

new_lambda,nkeephyp,1))./n_update;
932
933 suffstat.lambda{f}(keephyp) = lambda_update;
934 suffstat.n{f}(keephyp) = n_update;
935
936 % clear suffstats for hyps with beliefs=0
937 suffstat.lambda{f}(~ismember(1:nhyp,keephyp)) = 0;
938 suffstat.n{f}(~ismember(1:nhyp,keephyp)) = 0;
939 end
940
941 % Concatenating new hypothesis
942 if ~isempty(prior)
943 if nhyp < memory
944 % add prior as newest hypothesis
945 suffstat.n{f}(nhyp+1) = prior.n{f};
946 suffstat.lambda{f}(nhyp+1) = prior.lambda{f};
947 else
948 % remove oldest hypothesis and add prior as newest hypothesis
949 suffstat.n{f} = cat(1,suffstat.n{f}(2:end),prior.n{f});
950 suffstat.lambda{f} = cat(2,suffstat.lambda{f}(2:end), prior.lambda{f});
951 end
952 end
953 end
954
955 % increment context to include new observation
956 cond_obs = [cond_obs; obs];
957 cond_obs(1,:) = [];
958
959 end
960
961
962 % ====== PDF functions =============================================
963 function p = studentpdf(x, mu, var, n)
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964 c = exp(gammaln(n/2 + 0.5) − gammaln(n/2)) .* (n.*pi.*var).^(−0.5);
965 p = c .* (1 + (1./(n.*var)).*(x−mu).^2).^(−(n+1)/2);
966 end
967
968 function p = poissonpdf(x, lambda)
969 if abs(x − round(x)) > 1e−1
970 error('Poisson PDF input x must be an integer.');
971 else
972 x = round(x);
973 end
974 p = ((lambda.^x) / factorial(x)) .* exp(−lambda);
975 end
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