26,527 research outputs found

    Self-consistent equilibrium of a two-dimensional electron system with a reservoir in a quantizing magnetic field: Analytical approach

    Full text link
    An analytical approach has been developed to describe grand canonical equilibrium between a three dimensional (3D) electron system and a two dimensional (2D) one, an energy of which is determined self-consistently with an electron concentration. Main attention is paid to a Landau level (LL) pinning effect. Pinning means a fixation of the LL on a common Fermi level of the 2D and the 3D systems in a finite range of the magnetic field due to an electron transfer from the 2D to the 3D system. A condition and a start of LL pinning has been found for homogeneously broadened LLs. The electronic transfer from the 3D to the 2D system controls an extremely sharp magnetic dependency of an energy of the upper filled LL at integer filling of the LLs. This can cause a significant increase of inhomogeneous broadening of the upper LL that was observed in recent local probe experiments.Comment: 12 pages, 2 figures, revtex

    The 24-Cell and Calabi-Yau Threefolds with Hodge Numbers (1,1)

    Get PDF
    Calabi-Yau threefolds with h^11(X)=h^21(X)=1 are constructed as free quotients of a hypersurface in the ambient toric variety defined by the 24-cell. Their fundamental groups are SL(2,3), a semidirect product of Z_3 and Z_8, and Z_3 x Q_8.Comment: 22 pages, 3 figures, 3 table

    Generic suppression of conductance quantization of interacting electrons in graphene nanoribbons in a perpendicular magnetic field

    Full text link
    The effects of electron interaction on the magnetoconductance of graphene nanoribbons (GNRs) are studied within the Hartree approximation. We find that a perpendicular magnetic field leads to a suppression instead of an expected improvement of the quantization. This suppression is traced back to interaction-induced modifications of the band structure leading to the formation of compressible strips in the middle of GNRs. It is also shown that the hard wall confinement combined with electron interaction generates overlaps between forward and backward propagating states, which may significantly enhance backscattering in realistic GNRs. The relation to available experiments is discussed.Comment: 4 pages, 3 figure

    Influence of nonmagnetic dielectric spacers on the spin wave response of one-dimensional planar magnonic crystals

    Get PDF
    The one-dimensional planar magnonic crystals are usually fabricated as a sequence of stripes intentionally or accidentally separated by non-magnetic spacers. The influence of spacers on shaping the spin wave spectra is complex and still not completely clarified. We performed the detailed numerical studies of the one-dimensional single- and bi-component magnonic crystals comprised of a periodic array of thin ferromagnetic stripes separated by non-magnetic spacers. We showed that the dynamic dipolar interactions between the stripes mediated by non-magnetic spacer, even ultra-narrow, significantly shift up the frequency of the ferromagnetic resonance and simultaneously reduce the spin wave group velocity, which is manifested by the flattening of the magnonic band. We attributed these changes in the spectra to the modifications of dipolar pinning and shape anisotropy both dependent on the width of the spacers and the thickness of the stripes, as well as to the dynamical magnetic volume charges formed due to inhomogeneous spin wave amplitude

    The Fulling-Davies-Unruh Effect is Mandatory: The Proton's Testimony

    Full text link
    We discuss the decay of accelerated protons and illustrate how the Fulling-Davies-Unruh effect is indeed mandatory to maintain the consistency of standard Quantum Field Theory. The confidence level of the Fulling-Davies-Unruh effect must be the same as that of Quantum Field Theory itself.Comment: Awarded "honorable mention" by Gravity Research Foundation in the 2002 Essay competitio

    Magnetosubband and edge state structure in cleaved-edge overgrown quantum wires

    Full text link
    We provide a systematic quantitative description of the structure of edge states and magnetosubband evolution in hard wall quantum wires in the integer quantum Hall regime. Our calculations are based on the self-consistent Green's function technique where the electron- and spin interactions are included within the density functional theory in the local spin density approximation. We analyze the evolution of the magnetosubband structure as magnetic field varies and show that it exhibits different features as compared to the case of a smooth confinement. In particularly, in the hard-wall wire a deep and narrow triangular potential well (of the width of magnetic length lBl_B) is formed in the vicinity of the wire boundary. The wave functions are strongly localized in this well which leads to the increase of the electron density near the edges. Because of the presence of this well, the subbands start to depopulate from the central region of the wire and remain pinned in the well region until they are eventually pushed up by increasing magnetic field. We also demonstrate that the spin polarization of electron density as a function of magnetic field shows a pronounced double-loop pattern that can be related to the successive depopulation of the magnetosubbands. In contrast to the case of a smooth confinement, in hard-wall wires the compressible strips do not form in the vicinity of wire boundaries and spatial spin separation between spin-up and spin-down states near edges is absent.Comment: 9 pages, submitted to Phys. Rev.

    Magnitude of Magnetic Field Dependence of a Possible Selective Spin Filter in ZnSe/Zn_{1-x}Mn_{x}Se Multilayer Heterostructure

    Full text link
    Spin-polarized transport through a band-gap-matched ZnSe/Zn_{1-x}Mn_{x} Se/ZnSe/Zn_{1-x}Mn_{x}Se/ZnSe multilayer structure is investigated. The resonant transport is shown to occur at different energies for different spins owing to the split of spin subbands in the paramagnetic layers. It is found that the polarization of current density can be reversed in a certain range of magnetic field, with the peak of polarization moving towards a stronger magnetic field for increasing the width of central ZnSe layer while shifting towards an opposite direction for increasing the width of paramagnetic layer. The reversal is limited in a small-size system. A strong suppression of the spin up component of the current density is present at high magnetic field. It is expected that such a reversal of the polarization could act as a possible mechanism for a selective spin filter device

    On the direct search for spin-dependent WIMP interactions

    Full text link
    We examine the current directions in the search for spin-dependent dark matter. We discover that, with few exceptions, the search activity is concentrated towards constraints on the WIMP-neutron spin coupling, with significantly less impact in the WIMP-proton sector. We review the situation of those experiments with WIMP-proton spin sensitivity, toward identifying those capable of reestablishing the balance.Comment: 7 pages, 4 figure

    Implications for the origin of dwarf early-type galaxies: a detailed look at the isolated rotating dwarf early-type galaxy CG 611, with ramifications for the Fundamental Plane's (S_K)^2 kinematic scaling and the spin-ellipticity diagram

    Get PDF
    Selected from a sample of nine, isolated, dwarf early-type galaxies (ETGs) having the same range of kinematic properties as dwarf ETGs in clusters, we use CG 611 (LEDA 2108986) to address the Nature versus Nurture debate regarding the formation of dwarf ETGs. The presence of faint disk structures and rotation within some cluster dwarf ETGs has often been heralded as evidence that they were once late-type spiral or dwarf irregular galaxies prior to experiencing a cluster-induced transformation into an ETG. However, CG 611 also contains significant stellar rotation (~20 km/s) over its inner half light radius, R_(e,maj)=0.71 kpc, and its stellar structure and kinematics resemble those of cluster ETGs. In addition to hosting a faint young nuclear spiral within a possible intermediate-scale stellar disk, CG 611 has accreted an intermediate-scale, counter-rotating gas disk. It is therefore apparent that dwarf ETGs can be built by accretion events, as opposed to disk-stripping scenarios. We go on to discuss how both dwarf and ordinary ETGs with intermediate-scale disks, whether under (de)construction or not, are not fully represented by the kinematic scaling S_0.5=sqrt{ 0.5(V_rot)^2 + sigma^2 }, and we also introduce a modified spin-ellipticity diagram, lambda(R)-epsilon(R), with the potential to track galaxies with such disks.Comment: 15 pages (includes 9 figures and an extensive 2+ page reference list
    corecore