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Abstract

Calabi-Yau threefolds with h11(X) = h21(X) = 1 are constructed as free
quotients of a hypersurface in the ambient toric variety defined by the 24-cell.
Their fundamental groups are SL(2, 3), Z3 o Z8, and Z3 ×Q8.ar
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Figure 1: Plot of the Hodge numbers of known Calabi-Yau threefolds (and their
mirrors) with h11 + h21 < 25.

1 Introduction

The most basic observation about the Hodge numbers of Calabi-Yau threefolds is that
they apparently cannot take arbitrary values, even though we do not have any good
mathematical explanation. One empirical constraint [1] is that the height is limited
to

h11 + h21 ≤ 502, (1)

leaving us only with a finite number of possible Hodge numbers. Not having made
any progress in the way of an upper bound for the height, one might want to ask
whether there is any lower bound [2, 3, 4]. In fact, just looking at the lists of com-
plete intersections in projective spaces (CICY [5, 6]) yields h11 + h21 ≥ 30 and the
hypersurfaces in toric varieties satisfy h11+h21 ≥ 29. However, dividing out free group
actions almost always lowers the Hodge numbers (and never raises them), so these
naive lower bounds for the height can be easily violated [7, 8, 9]. From a physics per-
spective, this serves both to reduce the number of moduli [10, 11, 12, 13] and, via the
Hosotani mechanism [14, 15, 16], to break the GUT gauge group. By systematically
constructing free quotients of CICY threefolds [17, 3, 18, 19, 20, 21], one can push
down the lower boundary for the height to h11 + h21 = 4. In particular, a minimal
three-generation manifold [22] with (h11, h21) = (4, 1) can thus be realized.

However, one might wonder if even smaller Hodge numbers are possible. In particu-
lar, the minimal value for a non-rigid Calabi-Yau threefold would be (h11, h21) = (1, 1).
The purpose of this paper is to fill this gap, and construct a “minimal” Hodge number
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example. The idea, in a nutshell, is to look for permutation actions that act simply
transitively 1 on the vertices of a lattice polytope, and use this to define a group ac-
tion on a anticanonical hypersurface in the corresponding toric variety. Those familiar
with such constructions will immediately notice that this almost implies that there
is a single complex structure modulus. However, various technical details need to be
checked before one can conclude that this quotient is, indeed, a smooth Calabi-Yau
threefold.

In Section 2, I will start with some elementary properties of the 24-cell lattice
polytope that I will use in the following. In Section 3, I am going to define a group
action and compute the fixed point sets on the ambient toric variety defined by the
lattice polytope. Then, in Section 4, I will check that it leads to a desired free action
on a Calabi-Yau hypersurface, leading to Hodge numbers (1, 1) on the smooth quotient
threefold. Finally, in Section 5, I will quickly go through two similar group actions
and all partial quotients. All toric geometry computations used in this paper were
done using [23, 24, 25, 26].

2 The 24-Cell

There are six 4-dimensional regular polytopes, the 4-simplex, 4-cube, 16-cell, 24-cell,
120-cell and 600-cell. Apart from the 24-cell, these are higher-dimensional analogues
of the tetrahedron, cube, octahedron, dodecahedron, and icosahedron. In particu-
lar, they transform in the same way under duality.2 The 24-cell is the regular 4-
dimensional polytope that does not have a 3-dimensional analog. For lack of anything
else to transform into, it is also self-dual. A curious fact, that has already been re-
marked in [1], is that the 24-cell appears as one of the 473,800,776 reflexive 4-d lattice
polytopes. In fact, the 24-cell can be constructed as the convex hull of the 24 roots
of the D4 lattice. Amongst all 4-d reflexive lattice polytopes, it is the one with the
largest symmetry group [1]. The symmetry group obviously must contain the Weyl
group of D4, but is actually larger. In fact, the full symmetry group of the 24-cell is
the Weyl group of F4 and has 1152 elements.

3 A Toric Variety with SL(2,3) Action

3.1 The Face Fan

Following the usual notation of toric geometry [27, 28, 29], we will identify the 4-
dimensional root lattice of D4 with N ' Z4. Doing so breaks much of the symmetry

1That is, for any two vertices v1, v2 there exists a unique group element g ∈ G with g(v1) = v2.
2The tetrahedron is self-dual, cube and octahedron are exchanged, and dodecahedron and icosa-

hedron are exchanged.
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Figure 2: Steregraphic projection of the 24-cell into 3 dimensions.

and the coordinates of the vertices do not manifest the 24-cell structure at all. How-
ever, picking a basis is convenient for direct computation and we will the particular
lattice basis of Tables 1 and 2 in the following. Given these 24 points, we define the
polytope

∇ = conv
{
p1, p2, . . . , p24

}
. (2)

Each of the 24 facets of λ is an octahedron, and spans one generating cone in the face
fan

F∇ =
{
〈p2, p6, p10, p14, p18, p21〉, 〈p10, p12, p14, p16, p21, p24〉, 〈p2, p10, p12, p19, p20, p21〉,

〈p6, p8, p14, p16, p21, p23〉, 〈p2, p4, p6, p8, p20, p21〉, 〈p8, p12, p16, p20, p21, p22〉,〈p1, p5, p9, p13, p17, p18〉,

〈p9, p11, p13, p15, p17, p24〉, 〈p1, p3, p9, p11, p17, p19〉,〈p5, p7, p13, p15, p17, p23〉, 〈p1, p3, p4, p5, p7, p17〉,

〈p3, p7, p11, p15, p17, p22〉,〈p9, p10, p13, p14, p18, p24〉, 〈p1, p2, p9, p10, p18, p19〉, 〈p9, p10, p11, p12, p19, p24〉,

〈p5, p6, p13, p14, p18, p23〉, 〈p1, p2, p4, p5, p6, p18〉, 〈p4, p5, p6, p7, p8, p23〉,〈p13, p14, p15, p16, p23, p24〉,

〈p1, p2, p3, p4, p19, p20〉, 〈p11, p12, p15, p16, p22, p24〉,〈p3, p11, p12, p19, p20, p22〉, 〈p7, p8, p15, p16, p22, p23〉,

〈p3, p4, p7, p8, p20, p22〉
}
. (3)

We will now pick a particular 24-element subgroup of the automorphism group
Weyl(F4) of the 24-cell. Acting on from the left on the vertices pi ∈ N of the polytope
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∇, it is generated by the two matrices

g3 =


0 0 1 0
0 0 0 1
−1 0 −1 0
0 −1 0 −1

 , g4 =


0 −1 1 0
1 1 0 1
0 1 0 1
−1 −1 −1 −1

 . (4)

Alternatively, the two generators can be written as the two permutations

g3 = (1, 14, 22)(2, 24, 7)(3, 18, 16)(4, 10, 15)(5, 21, 11)(6, 12, 17)(8, 19, 13)(9, 23, 20)

g4 = (1, 10, 16, 7)(2, 12, 15, 5)(3, 9, 14, 8)(4, 19, 24, 23)(6, 20, 11, 13)(17, 18, 21, 22)
(5)

permuting the 24 vertices3. Together, g3 and g4 generate a representation of the group

G def= 〈g3, g4〉 ' SL(2, 3), (6)

of 2×2-matrices with entries in the finite field with 3 elements. Using the permutation
group action, we can write the complete fan (including all lower-dimensional faces)
succinctly as

F∇ = G ·
{
〈p1, p2, p3, p4, p19, p20〉

}
∪

G ·
{
〈p1, p2, p4〉, 〈p1, p3, p4〉, 〈p1, p2, p19〉, 〈p1, p3, p19〉

}
∪

G ·
{
〈p1, p2〉, 〈p1, p3〉, 〈p1, p4〉, 〈p1, p19〉

}
∪

G ·
{
〈p1〉

}
∪
{
〈〉
} (7)

See also Figure 3 for a pictorial representation of the relative position of the rays of
the cones.

3.2 Homogeneous Coordinates and the Maximal Torus

In the following, I will be using the Cox homogeneous coordinate description of the
toric variety [30]. There are 24 homogeneous coordinates z1, . . . , z24 modulo

Hom
(
A3(P∇),C×

)
=
(
C×)20 (8)

rescalings. By definition, the 4-dimensional toric variety P∇ comes with an action of
(C×)4 such that there is a single maximal-dimensional orbit, which I will denote as
P〈〉 in the following. In the usual correspondence between torus orbits and cones of
the fan, this is the orbit associated to the trivial cone 〈〉. In terms of homogeneous
coordinates, it is the locus where no homogeneous coordinate vanishes. The maximal
orbit itself is always smooth as singular points must fill out whole torus orbits.

3By abuse of notation, we will not distinguish the group from its matrix and permutation repre-
sentation in the following.

6



p20

p19

p2 p4

p3

p1

Figure 3: One facet of the 24-cell with its spanning vertices.

In the remainder of this section, we will be investigating the fixed points of G '
SL(2, 3) on the maximal torus. Since all homogeneous coordinates are invertible there,
we can freely use the homogeneous rescalings to set some homogeneous coordinates
to unity. In fact, we can pick unique representatives

P〈〉 =
{

[ẑ1 : · · · : ẑ24]
∣∣∣ ẑi 6= 0

}
=

=
{

[z1 : z2 : z3 : z4 : 1 : · · · : 1]
∣∣∣ zi 6= 0

}
'
(
C×
)4 ⊂ P∇

(9)

for each point where only the first four homogeneous coordinates are non-zero, and
such that there are no remaining identifications. This is so because there is the
following integral basis for the linear relations amongst the vertices of ∇:

p5 = p1−p2−p3+p4

p6 = −p3+p4

p7 = −p2 +p4

p8 = −p1 +p4

p9 = p1 −p4

p10 = p2 −p4

p11 = p3−p4

p12 = −p1+p2+p3−p4

p13 = p1−p2−p3

p14 = −p3

p15 = −p2

p16 = −p1

p17 = p1−p2

p18 = p1 −p3

p19 = p2+p3−p4

p20 = −p1+p2+p3

p21 = −p1+p2

p22 = −p1 +p3

p23 = −p2−p3+p4

p24 = −p4

(10)
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The first equation (for p5) then translates into the homogeneous rescaling[
z1 : · · · : z24

]
=
[
λz1 : λ−1z2 : λ−1z3 : λz4 : λ−1z5 : z6 : z7 : · · · : z24

]
(11)

and so on. Clearly, the basis for the relations eq. (10) allows us to unambiguously
scale z5, . . . , z24 to unity on the maximal torus.

3.3 Fixed Points on the Maximal Torus

To find the fixed points of the G-action on the toric variety P∇, we need to look at each
conjugacy class of G. Excluding the identity of G, there are 6 non-trivial conjugacy
classes. For the remainder of this section, I will discuss each in turn.

The conjugacy class of g2
4

The first conjugacy class is of order 2 and contains the single central group element

g2
4 = diag(−1,−1,−1,−1). (12)

Its action on the homogeneous coordinates on the maximal torus P〈〉 is

g2
4

([
z1 : z2 : z3 : z4 : 1 : · · · : 1

])
=

=
[
1: · · · :1 : z3︸︷︷︸

Position 14

: z2︸︷︷︸
15

: z1︸︷︷︸
16

: 1 : · · · :1 : z4︸︷︷︸
Position 24

]
=

=

[
1

z1

:
1

z2

:
1

z3

:
1

z4

: 1 : · · · : 1

]
. (13)

Hence, there are 24 fixed points

Pg
2
4

〈〉 =
{[
z1 : z2 : z3 : z4 : 1 : · · · : 1

] ∣∣∣ z0, z2, z2, z3 ∈ {+1,−1}
}

(14)

The conjugacy class of g4

The second conjugacy class is of order 4 and contains 6 group elements. Since a g4-

fixed point is also a g2
4-fixed point, we immediately note that Pg4

〈〉 ⊂ Pg
2
4

〈〉 is again a
discrete set of points. Explicitly, the g4-fixed point set turns out to be 4 out of the 12
fixed points of g2

4, namely

Pg4

〈〉 =
{

[+1 : +1 : +1 : +1 : 1 : · · · : 1],

[+1 : −1 : −1 : +1 : 1 : · · · : 1],

[−1 : +1 : −1 : −1 : 1 : · · · : 1],

[−1 : −1 : +1 : −1 : 1 : · · · : 1]
}
.

(15)
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The conjugacy classes of g3 and g2
3

The third and fourth conjugacy class can be represented by g3 and g2
3, respectively.

They are both of order 3 and contain 4 representatives. In fact, they are related by an
automorphism of G and, therefore, one only needs to discuss g3, say. On the maximal
torus P〈〉, its action is

g3

([
z1 : z2 : z3 : z4 : 1 : · · · : 1

])
=

[
z3 : z4 :

1

z1z3

:
1

z2z4

: 1 : · · · : 1

]
(16)

and, therefore, the fixed points are given by the ideal4

Ig3 =

〈
z1 = z3, z2 = z4, z3 =

1

z1z3

, z4 =
1

z2z4

〉
. (17)

The associated variety V (I) is the fixed point set, and an elementary computation
reveals that it consists of the 9 points

Pg3

〈〉 = V
(
Ig3
)

=
{[
µ : ν : µ : ν : 1 : · · · : 1

] ∣∣∣ µ, ν ∈ {1, e2πi/3, e4πi/3}
}
. (18)

The conjugacy classes of g3g
2
4 and g2

3g
2
4

The fifth and sixth conjugacy class can be represented by g3g
2
4 and g2

3g
2
4, respectively.

They are both of order 6 and contain 4 representatives. These are again related by
an automorphism of G and, therefore, one only needs to discuss

g3g
2
4 =


0 0 −1 0
0 0 0 −1
1 0 1 0
0 1 0 1

 . (19)

Moreover, (g3g
2
4)2 = g2

3, so the fixed point set of g3g
2
4 is contained in the 9 fixed points

of g2
3. An explicit computation shows that g3g

2
4 fixes the single point

Pg3g2
4

〈〉 =
{[

1 : 1 : 1 : 1 : 1 : · · · : 1
]}

(20)

on the maximal torus.

4I will always think of the equations of the fixed points on the maximal torus as an ideal in the
polynomial ring in the formal commutative variables z1, z−11 , . . . , z4, z−14 subject to the relations
z1z
−1
1 = 1, . . . , z4z

−1
4 = 1.
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3.4 Stanley-Reisner Ideal and Other Fixed Points

Thus far, I have shown that any element of G ' SL(2, 3) fixes a discrete set of points
on the maximal torus P〈〉 ' (C×)4, that is, on the locus where all homogeneous vari-
ables are non-zero. The 4-dimensional toric variety P∇ is a compactification of P〈〉
by gluing in lower-dimensional toric varieties associated to the non-empty cones of
the fan F∇. One needs to discuss fixed points on these lower-dimensional strata as
well. The main observation is that, given any g ∈ G, if the i-th homogeneous variable
zi vanishes, the permuted homogeneous variable zg(i) has to vanish as well on the g-
fixed point set. In other words, the g-fixed point sets on the lower-dimensional strata
are contained in the subvarieties where whole g-permutation orbits of homogeneous
variables vanish. As in the previous section, I will discuss each conjugacy class sepa-
rately. Note that because G acts regularly (simply transitively) on the 24 variables,
all g ∈ G-orbits are of the same size.

The conjugacy class of g2
4

The 24 homogeneous variables z1, . . . , z24 form 12 orbits of length 2 under the permu-
tation g2

4. For example, the orbit containing the first variable is {z1, zg2
4(i)} = {z1, z16}.

Therefore, the fixed point set away from the maximal torus is contained in the union
of the 12 subvarieties(

P∇ − P〈〉
)g2

4 ⊂
⋃
g∈G

V
(
〈zg(1) = 0, zg(16) = 0〉

)
. (21)

The conjugacy class of g4

The homogeneous variables form 6 orbits of length 4. The fixed point set away from
the maximal torus is(

P∇ − P〈〉
)g4

⊂
⋃
g∈G

V
(
〈zg(1) = 0, zg(7) = 0, zg(10) = 0, zg(16) = 0〉

)
. (22)

The conjugacy classes of g3 and g2
3

The homogeneous variables form 8 orbits of length 3. Again, it suffices to consider
g3-fixed points. Away from the maximal torus, they are(

P∇ − P〈〉
)g3

⊂
⋃
g∈G

V
(
〈zg(1) = 0, zg(14) = 0, zg(22) = 0〉

)
. (23)
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The conjugacy classes of g3g
2
4 and g2

3g
2
4

The homogeneous variables form 4 orbits of length 6. Again, it suffices to consider
g3g

2
4-fixed points. Away from the maximal torus, they are

(
P∇ − P〈〉

)g3g2
4 ⊂

⋃
g∈G

V
(
〈zg(1) = 0, zg(3) = 0, zg(14) = 0,

zg(16) = 0, zg(18) = 0, zg(22) = 0〉
)
. (24)

The Stanley-Reisner Ideal

Not all homogeneous variables are allowed to vanish simultaneously as one can see
from the homogeneous coordinate description

P∇ =
CF∇(1) − Z(F∇)

(C×)20
(25)

of the toric variety. Here, F∇(1) are the 24 rays of the fan, CF∇(1) ' C24 is the affine
space parametrized by the corresponding homogeneous variables, and Z(F∇) is the
exceptional set

Z(F∇) =
⋃

zi1 ···zik∈SR(F∇)

V
(
zi1 = 0, . . . , zik = 0

)
. (26)

Taking the union over all monomials in the Stanley-Reisner ideal SR(F∇) is equivalent
to only taking the union over the finitely many minimal monomials5

The Stanley-Reisner ideal of the variety P∇ is generated by 204 monomials. Using
the permutation group action, one can write it as

SR(F∇) =
〈{

zg(1)zg(16), zg(1)zg(15), zg(1)zg(14), zg(1)zg(12), zg(1)zg(24),

zg(1)zg(6)zg(20), zg(1)zg(6)zg(10), zg(1)zg(6)zg(7), zg(1)zg(6)zg(13)

∣∣∣ g ∈ G}〉. (27)

We notice that any potential fixed point in P∇ − P〈〉, that is, outside of the maximal
torus, is contained in the exceptional set, see eqns. (21), (22), (23), and (24). To
summarize, all fixed point sets of all non-trivial group elements g ∈ G are finite6 and
contained in the maximal torus P〈〉,⋃

g∈G−{1}

Pg∇ ⊂ P〈〉 ' (C×)4 ( P∇ (28)

5The “minimal” monomials are zi1 · · · zik such that {i1, . . . , ik} is a primitive collection.
6Note that the fixed point set is automatically finite if it is contained in the maximal torus.
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3.5 Singularities

Each of the 24 generating cones of the fan, for example 〈p1, p2, p3, p4, p19, p20〉, is not
smooth.7 This gives rise to 24 singular points of the toric variety P∇. All other cones
of the fan (of dimension ≤ 3) are smooth, and, therefore, P∇ is smooth outside of the
24 singular points.

In terms of homogeneous coordinates, these singular points are

Sing(P∇) =
{
V
(
zg(1), zg(2), zg(3), zg(4), zg(19), zg(20)

) ∣∣∣ g ∈ G}. (29)

Since the maximal cones are not simplicial, the singular points are worse than orbifold
singularities by a finite group.

In the remainder of this section I will investigate the singularities further. However,
the details will not be important for the following. Now, since each singularity is
purely local data, it is most convenient to use the description of the toric variety as
patched local affine schemes Spec

(
C[σ∨ ∩M ]

)
instead of the global description via

homogeneous coordinates. By symmetry, I just have to consider one of the 24 affine
patches, and will pick

σ = 〈p1, p2, p3, p4, p19, p20〉
⇔ σ∨ =

〈
(1, 1, 0, 1), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 1, 1),

(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 0, 0), (0, 0, 1, 0)
〉 (30)

Since the dual cone σ∨ is spanned by 8 rays, we need an 8-dimensional ambient affine
space to embed the patch Spec

(
C[σ∨ ∩M ]

)
of P∇. A standard computation [31, 23]

yields the toric ideal

C
[
σ∨ ∩M

]
= C

[
x1, x2, x3, x4, x5, x6, x7, x8

]/〈
x1x3 − x2x4, x1x5 − x4x6, x1x7 − x2x6, x1x8 − x2x5, x2x5 − x3x6,

x2x5 − x4x7, x2x8 − x3x7, x3x5 − x4x8, x5x7 − x6x8

〉
(31)

Note that the 9 defining equations are far from transverse and, in fact, cut out a 4-
dimensional affine algebraic variety in C8. The singularity is at the origin x1 = · · · =
x8 = 0.

4 The Calabi-Yau Threefold

4.1 Construction and Smoothness

We now pick a G ' SL(2, 3)-invariant section of the anti-canonical bundle on toric va-

riety P∇, yielding a 3-dimensional variety X̃ with vanishing first Chern class c1(X̃) =

7A cone σ is smooth if the rays of the cone are a lattice basis for N ∩ spanQ(σ). In other words,
the associated open torus orbit is a smooth subset of the toric variety.
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0. The sections of the anti-canonical bundle −K∇ of P∇ are generated by the homoge-
neous monomials that correspond to the integral points of the dual polytope ∆ = ∇∨,
which are the origin and the 24 vertices of ∆ corresponding to the 24 facets of ∇.
That is [23],

H0
(
P∇,−K∇

)
=
〈{ 24∏

i=1

zi

}
∪
{
z2
g(1)z

2
g(2)z

2
g(3)z

2
g(4)zg(5)zg(6)zg(7)zg(8)zg(9)×

zg(10)zg(11)zg(12)zg(17)zg(18)z
2
g(19)z

2
g(20)zg(21)zg(22)

∣∣∣ g ∈ G}〉 (32)

The permutation action of G is facet-transitive on ∇ and, therefore, vertex-transitive
on ∆. Hence, the two invariant polynomials are the monomial corresponding to the
origin,

P∞
def=

24∏
i=1

zi, (33)

and the sum over the 24 vertices of ∆,

P0
def=
∑
g∈G

(
z2
g(1)z

2
g(2)z

2
g(3)z

2
g(4)zg(5)zg(6)zg(7)zg(8)zg(9)×

zg(10)zg(11)zg(12)zg(17)zg(18)z
2
g(19)z

2
g(20)zg(21)zg(22)

)
(34)

Together, they span the invariant sections

H0
(
P∇,−K∇

)G
= spanC(P0, P∞). (35)

Hence, there is a one-parameter family

Pϕ
def= P0 + ϕP∞, ϕ ∈ C ∪ {∞} (36)

of invariant polynomials, giving rise to a family

X̃ϕ
def=
{
Pϕ = 0

}
⊂ P∇ (37)

of G ' SL(2, 3)-symmetric varieties. The quotient Xϕ = X̃ϕ/G is then again a 3-
dimensional variety with vanishing first Chern class c1(X) = 0. There are 3 potential
sources for singularities on the quotient, namely

1. singularities of the ambient toric variety P∇ containing X̃,

2. fixed points of the G-action on X̃, and

3. loci where the hypersurface equation Pϕ fails to be transverse.

I will now discuss each case in turn.
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1. SinceG permutes the 24 singularities of P∇, one only has to consider one of them.
For example, the fixed point corresponding to the cone 〈p1, p2, p3, p4, p19, p20〉 ∈
F∇ is

s =
[
0 : 0 : 0 : 0 : 1 : · · · : 1 : 0 : 0︸︷︷︸

Positions 19 and 20

: 1 : · · · : 1] ∈ Sing
(
P∇
)
, (38)

see eq. (29). At the singular point,

P0(s) = 1, P∞(s) = 0. (39)

Therefore, a sufficiently generic hypersurface X̃ϕ misses the singular point s.

2. On the maximal torus P〈〉 none of the homogeneous coordinates is allowed to
vanish. In particular,

P∞(z) 6= 0 ∀z ∈ P〈〉 (40)

by eq. (33). Since all fixed points are contained in P〈〉, a sufficiently generic

hypersurface X̃ϕ misses the fixed points. For example, one can check that X̃1

misses all fixed points.

3. Finally, one has to check that the hypersurface equation is transverse. As in the
end of Subsection 3.5, I will make use of the covering of the toric variety P∇ by
24 affine patches Spec

(
C[σ∨ ∩M ]

)
corresponding to the generating cones. By

symmetry, one only has to check transversality in one of the 24 affine patches.
In the patch used for eq. (31), the two invariant polynomials read

P0

∣∣
SpecC[σ∨∩M ]

= 1 +
∑8

i=1xi+

x1x3 + x1x5 + x2x6 + x3x7 + x3x5 + x6x8 + x1x3x7+

x3x6

(
x1 + x3 + x4 + x5 + x6 + x7 + x8 + x3x6

)
P∞
∣∣
SpecC[σ∨∩M ]

= x3x6.

(41)

A straightforward computation [25] yields that P1 = P0 + P∞ is transverse.
Therefore, any sufficiently generic Pϕ is transverse.

This proves that a generic hypersurface Xϕ is smooth. For example, X1 is smooth.
The (non-generic) hypersurfaces X0 and X∞ are both singular because the special

polynomials P0 and P∞ fail to be transverse. Moreover, X0 has additional orbifold
singularities because X̃0 passes through 12 out of the 16 g2

4-fixed points.8 Finally, X∞
has an additional singularity because X̃∞ passes through the singular points of the
ambient toric variety. A complete description of the complex structure moduli space
will be given elsewhere [32].

8The 4 points that are fixed by g24 and missed by X̃0 are the 4 fixed points of g4.
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4.2 Hodge Numbers

A generic (not necessarily symmetric) Calabi-Yau hypersurface in the toric variety P∇
has Hodge numbers

hpq
(
X̃
)

= 1
0

0
1

0
20

20
0

0
20

20
0

1
0

0
1 . (42)

Unsurprisingly, it is self-mirror (h11 = h21) since the 24-cell is a self-dual polytope. All

complex structure deformations of X̃ are represented by deformations of the defining
polynomial. Therefore, the complex structure deformations of G-symmetric threefolds
X̃ are necessarily parametrized by the G-invariant polynomials. As we have seen in
eq. (35), there is a one-dimensional family Pϕ of invariant polynomials. Therefore,

h21(X) = h21
(
X̃
)G

= 1 (43)

The Euler number 0 = χ(X̃) = χ(X) = 2h11(X)−2h21(X) then implies that h11(X) =

1 as well. To summarize, the Hodge diamond of a smooth quotient X = X̃/G Calabi-
Yau threefold is

hpq
(
X
)

= 1
0

0
1

0
1

1
0

0
1

1
0

1
0

0
1 . (44)

5 Generalizations

5.1 Permutation Orbifolds

Let me start by explaining some of the motivation behind the group action on the toric
variety P∇ defined by the 24-cell. By rewriting the Dolbeault cohomology and con-
tracting with the covariant constant (3, 0)-form, the h21 complex structure moduli of

the Calabi-Yau hypersurface X̃ correspond to the tangent bundle-valued cohomology
group

H2,1
(
X̃
)

= H1
(
X̃,∧2T ∗X̃

)
= H1

(
X̃, T X̃

)
. (45)

Now, the tangent bundle is a subbundle of the tangent bundle of the ambient space
restricted to X̃,

0 −→ TX̃ −→ TP∇|X̃ −→ O(−K∇)|X̃ −→ 0. (46)
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This leads to the long exact sequence

· · · −→ H0
(
X̃, O(−K∇)|X̃

)
−→ H1

(
X̃, T X̃

)
−→ H1

(
X̃, TP∇|X̃

)
= 0 (47)

of cohomology groups, where I used the result for the tangent-bundle valued coho-
mology of the toric variety from Appendix A. We see that, to minimize the surviving
complex structure moduli on a free quotient X = X̃/G, one needs to minimize the
number of G-invariant sections of the anticanonical bundle.

The invariant sections of the (pull-back of the) anticanonical bundle are computed
by the cohomology long exact sequence

0 −→ H0
(
P∇, O

)︸ ︷︷ ︸
'C

−→ H0
(
P∇, O(−K∇)

)︸ ︷︷ ︸
'C∆∩M

−→ H0
(
X̃, O(−K∇)|X̃

)
−→ 0. (48)

The simplest group actions on toric varieties are toric actions, that is, subgroups of
the maximal torus. But for these to admit a fixed-point free action on a Calabi-Yau
hypersurface is very rare [33]. In particular, there is no such action on P∇. Given
that the toric group actions do not suffice, one is led to consider permutation actions
on the homogeneous coordinates coming from symmetries of the polytope. Note that
the group elements, represented by orthogonal matrices, act in the same way on the
dual polytopes ∇ ∈ N and ∆ ∈ M in order to preserve the inner product. Since we
can identify

H0
(
P∇, O(−K∇)

)
= C∆∩M (49)

with the integral points of the polytope ∆, there are always at least two invariant
sections of the anticanonical bundle: The section corresponding to the origin of M ,
and the sum over one orbit of a vertex of ∆. If the vertices form more than one orbit,
then there are more invariant sections. Hence, one is led to search for subgroups of
Aut(∆) = Weyl(F4) that act simply transitively,9 that is, with a single orbit of length
24, on the vertices of ∇. A quick computation [26] reveals that, up to conjugacy,
there are 22 different subgroups of order 24. Of these, 4 act simply transitively on the
vertices. The groups are 2 subgroups isomorphic to SL(2, 3) that are not conjugate
to each other, a semidirect10 product Z3 o Z8 with GAP id [24,1], and Z3 ×Q8.

Thus far, I only showed that the group action would lead to h21 = 1 provided that
the quotient X = X̃/G is smooth. But we are not guaranteed that it is smooth, and
one must check it case-by-case. However, note that the invariant equations for all of
these four group actions are the same, namely the one-parameter family Pϕ defined in

9It is, a priori, not impossible for groups with |G| > 24 to act freely. The group action can
then still be transitive but not simply transitive. Therefore, there is some g ∈ G that fixes some
index i. The corresponding divisor zi = 0 is then mapped to itself by g, yet not forbidden by the
Stanley-Reisner ideal. Hence, we cannot as easily conclude that all fixed point sets are discrete.

10To fix notation, I will say that G is a semidirect product of N and H, written N oH, if there is
a group homomorphism G→ H with kernel N . For example, SL(2, 3) can be written as a semidirect
product SL(2, 3) = Q8 o Z3.

16



eq. (36). Hence, the covering Calabi-Yau manifold is always the same one-parameter

family X̃ϕ. We have already shown in Subsection 4.1 that a generic hypersurface does
not meet the ambient singularities and is transverse. Therefore, the covering space
is generically smooth and one only has to check that the group action is free on X̃.
That is, the fixed point set in P∇ must not meet the hypersurface for all g ∈ G−{1}.
Direct computation shows that the other SL(2, 3)-subgroup, that is the one we have
not used in Section 3, has fixed points.11 The remaining two groups have, like the first
SL(2, 3), only isolated fixed points in the maximal torus and no fixed points outside
of the maximal torus. Hence, all three groups act without fixed points on a generic
hypersurface X̃.

To summarize, there are really three different free quotients of a generic invariant
hypersurface X̃ ⊂ P∇. The three quotients Xi = X̃/Gi are Calabi-Yau manifolds
with the same Hodge numbers h11 = h21 = 1, but different fundamental groups. To
remind ourselves, the first one was

G1 = G = 〈g3, g4〉 ' SL(2, 3), (50)

see eq. (5) for the definition of the permutations g3 and g4. The second group can be
written as a semidirect product

G2 = 〈g3, g8〉 ' Z3 o Z8 (51)

with

g8
def= (1, 2, 20, 12, 16, 15, 13, 5)(3, 10, 8, 11, 14, 7, 9, 6)(4, 19, 21, 22, 24, 23, 17, 18). (52)

Finally, the third group can be written as a direct product

G3 = 〈g3, i, j〉 ' Z3 ×Q8 (53)

with

i =(1, 6, 16, 11)(2, 8, 15, 9)(3, 5, 14, 12)(4, 23, 24, 19)(7, 13, 10, 20)(17, 18, 21, 22),

j =(1, 7, 16, 10)(2, 3, 15, 14)(4, 22, 24, 18)(5, 8, 12, 9)(6, 20, 11, 13)(17, 23, 21, 19).
(54)

The three different groups have a common subgroup

Z6 = 〈g3, g
2
4〉 = G1 ∩G2 ∩G3 (55)

which is normal in G2 and G3, but not in G1.

11In fact, the other SL(2, 3)-action fixes surfaces in P∇ intersecting X̃ in curves.
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h11(XH) h21(XH) H
20 20 1
12 12 Z2

8 8 Z3

6 6 Z4

4 4 Z6

3 3 Z8, Q8

2 2 Z12

1 1 SL(2, 3), Z3 o Z8, Z3 ×Q8

Table 3: Fundamental groups π1(XH) = H and Hodge numbers of the various
free quotients of the Calabi-Yau hypersurface X̃ in the toric variety
P∇.

5.2 Subgroups and Partial Quotients

The three freely acting groups G1, G2, and G3 on X̃ have a various subgroups H,
each of which acts freely and gives rise to another Calabi-Yau threefold XH = X̃/H.
Up to conjugation, the subgroups are

G1 ⊃ 1, Z2, Z3, Z4, Z6, Q8, SL(2, 3);

G2 ⊃ 1, Z2, Z3, Z4, Z6, Z8, Z12, Z3 o Z8;

G3 ⊃ 1, Z2, Z3, Z(1)
4 , Z(2)

4 , Z(3)
4 , Z6, Q8, Z(1)

12 , Z
(2)
12 , Z

(3)
12 , Z3 ×Q8.

(56)

Note that G3 has three different Z4 and three different Z12 subgroups that are not
conjugate to each other. The corresponding free quotients of X̃ are not related by a
symmetry of the covering space, and might be different manifolds.

Having identified the different subgroups H ⊂ Gi, i = 1, 2, 3, one would like to
know the Hodge numbers of the partial quotient Calabi-Yau threefolds. Again because
the Euler number vanishes, it suffices to compute

h21(XH) = h21
(
X̃/H

)
= dimH1

(
X̃
)H
. (57)

From the computation of the tangent bundle cohomology in Appendix A, one can
identify

H1
(
X̃
)

= CF∇(1) −N ⊗Z C (58)

as H-representations. That is,

• CF∇(1) is the 24-dimensional representation spanned by the 24 vertices of the
polytope ∇, and

• N ⊗Z C is the 4-dimensional matrix representation of the group.
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It is then an easy exercise to compute the invariant cohomology groups. It turns out
that the representation on H1(TX̃) only depends on the group, and not on the details
of the permutation action. The resulting Hodge numbers, for the different groups, are
listed in Table 3.

A Cohomology of the Tangent Bundle

A.1 Of the Ambient Toric Variety

The tangent bundle of a toric variety has a monad presentation

0 −→ (n− d)O −→
n⊕
i=1

O(V (zi)) −→ TP∇ −→ 0 (59)

In our particular case, one only has to be careful about the singularities. For example,
O(V (zi)) is not a line bundle, but only a reflexive sheaf. Nevertheless, we can apply
exact sequences. Using the standard toric algorithm for the cohomology of Weil
divisors [29], I find

h•
(
P∇,O

)
= h•

(
P∇,O(V (zi))

)
= (1, 0, 0, 0, 0),

h•
(
P∇,O(K∇)

)
= (0, 0, 0, 0, 1),

h•
(
P∇,O(V (zi))⊗ O(K∇)

)
= (0, 0, 0, 0, 0).

(60)

Therefore,

h•
(
P∇, TP∇

)
= (4, 0, 0, 0, 0),

h•
(
P∇, TP∇ ⊗ O(K∇)

)
= (0, 0, 0, 20, 0).

(61)

The restriction to a smooth anticanonical hypersurface X̃ can be computed from the
short exact sequence

0 −→ TP∇ ⊗K∇ −→ TP∇ −→ TP∇|X̃ −→ 0, (62)

and I find
h•
(
X̃, TP∇|X̃

)
= (4, 0, 20, 0). (63)

A.2 Of the Hypersurface

First, we need the cohomology of the restriction O(−K∇)|X̃ of the anticanonical bun-
dle. Analogous to eq. (62), I find

h0
(
X̃, O(−K∇)|X̃

)
= h0

(
P∇, O(−K∇)

)
− h0

(
P∇, O

)
= 25− 1 = 24, (64)
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and all higher cohomology groups vanish. Therefore, the tangent bundle of the hy-
persurface,

0 −→ TX̃ −→ TP∇|X̃ −→ O(−K∇)|X̃ −→ 0 (65)

has cohomology groups
h•
(
X̃, T X̃

)
= (0, 20, 20, 0) (66)
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