7,658 research outputs found

    Valuing the voluntary sector: rethinking economic analysis

    Get PDF
    The voluntary sector plays an important role in the sports industry, as a provider of sporting opportunities and in the development of sport, from increasing participation through to supporting excellence and elite performance. However, despite this importance, research on its contribution to sport-related economic activity is limited, with information on this sector remaining the weakest part of current economic assessments of the UK sports industry. The research presented in this article examines the economic importance of the voluntary sector, using a case study of Sheffield. It demonstrates that the sports voluntary sector in the city is considerably smaller than was predicted when using national estimates, and that this is largely a consequence of methodological issues relating to previous research. The article suggests that in the light of the findings and the increasing use of sport in urban policy, there is a need to rethink the methodology used to evaluate the economic contribution of the voluntary sector in the future.</p

    H-1, N-15 and C-13 assignment of the amyloidogenic protein medin using fast-pulsing NMR techniques

    Get PDF
    Thirty-one proteins are known to form extracellular fibrillar amyloid in humans. Molecular information about many of these proteins in their monomeric, intermediate or fibrillar form and how they aggregate and interact to form the insoluble fibrils is sparse. This is because amyloid proteins are notoriously difficult to study in their soluble forms, due to their inherent propensity to aggregate. Using recent developments in fast NMR techniques, band-selective excitation short transient and band-selective optimized flip-angle short-transient heteronuclear multiple quantum coherence we have been able to assign a 5 kDa full-length amyloidogenic protein called medin. Medin is the key protein component of the most common form of localised amyloid with a proposed role in aortic aneurysm and dissection. This assignment will now enable the study of the early interactions that could influence initiation and progression of medin aggregation. The chemical shifts have been deposited in the BioMagRes-Bank accession Nos. 25399 and 26576

    The human myometrium differentially expresses mTOR signalling components before and during pregnancy: Evidence for regulation by progesterone

    Get PDF
    Emerging studies implicate the signalling of the mammalian target of rapamycin (mTOR) in a number of reproductive functions. To this date, there are no data regarding the expression of mTOR signalling components in the human myometrium during pregnancy. We hypothesized that mTOR-related genes might be differentially expressed in term or preterm labour as well as in labour or non-labour myometria during pregnancy. Using quantitative RT-PCR we demonstrate for first time that there is a significant downregulation of mTOR, DEPTOR, and Raptor in preterm labouring myometria when compared to non-pregnant tissues taken from the same area (lower segment). We used an immortalized myometrial cell line (ULTR) as an in vitro model to dissect further mTOR signalling. In ULTR cells DEPTOR and Rictor had a cytoplasmic distribution, whereas mTOR and Raptor were detected in the cytoplasm and the nucleus, indicative of mTORC1 shuttling. Treatment with inflammatory cytokines caused only minor changes in gene expression of these components, whereas progesterone caused significant down-regulation. We performed a non-biased gene expression analysis of ULTR cells using Nimblegen human gene expression microarray (n = 3), and selected genes were validated by quantitative RT-PCR in progesterone treated myometrial cells. Progesterone significantly down-regulated key components of the mTOR pathway. We conclude that the human myometrium differentially expresses mTOR signalling components and they can be regulated by progesterone. This article is part of a Special Issue entitled 'Pregnancy and Steroids'.This research was funded by National Institutes of Health Grant ESO12961

    Spectral projections and resolvent bounds for partially elliptic quadratic differential operators

    Full text link
    We study resolvents and spectral projections for quadratic differential operators under an assumption of partial ellipticity. We establish exponential-type resolvent bounds for these operators, including Kramers-Fokker-Planck operators with quadratic potentials. For the norms of spectral projections for these operators, we obtain complete asymptotic expansions in dimension one, and for arbitrary dimension, we obtain exponential upper bounds and the rate of exponential growth in a generic situation. We furthermore obtain a complete characterization of those operators with orthogonal spectral projections onto the ground state.Comment: 60 pages, 3 figures. J. Pseudo-Differ. Oper. Appl., to appear. Revised according to referee report, including minor changes to Corollary 1.8. The final publication will be available at link.springer.co

    Solid state NMR and X-ray diffraction studies of α-d-galacturonic acid monohydrate

    Get PDF
    Crystalline a-d-galacturonic acid monohydrate has been studied by 13C CPMAS NMR and X-ray crystallography. The molecular dynamics were investigated by evaluating 13C spin-lattice relaxation in the rotating frame (T1?) and chemical-shift-anisotropy properties of each carbon. Only limited molecular motions can be detected in the low frequency

    The Yangian symmetry of the Hubbard Model

    Full text link
    We discovered new hidden symmetry of the one-dimensional Hubbard model. We showthat the one-dimensional Hubbard model on the infinite chain has the infinite-dimensional algebra of symmetries. This algebra is a direct sum of two sl(2) sl(2) -Yangians. This Y(sl(2))⊕Y(sl(2)) Y(sl(2)) \oplus Y(sl(2)) symmetry is an extension of the well-known sl(2)⊕sl(2) sl(2) \oplus sl(2) . The deformation parameters of the Yangians are equal up to the signs to the coupling constant of the Hubbard model hamiltonian.Comment: 7 pages, ITP-SB-93-6

    RAC1 P29S regulates PD-L1 expression in melanoma.

    Get PDF
    Whole exome sequencing of cutaneous melanoma has led to the detection of P29 mutations in RAC1 in 5-9% of samples, but the role of RAC1 P29 mutations in melanoma biology remains unclear. Using reverse phase protein array analysis to examine the changes in protein/phospho-protein expression, we identified cyclin B1, PD-L1, Ets-1, and Syk as being selectively upregulated with RAC1 P29S expression and downregulated with RAC1 P29S depletion. Using the melanoma patient samples in TCGA, we found PD-L1 expression to be significantly increased in RAC1 P29S patients compared to RAC1 WT as well as other RAC1 mutants. The finding that PD-L1 is upregulated suggests that oncogenic RAC1 P29S may promote suppression of the antitumor immune response. This is a new insight into the biological function of RAC1 P29S mutations with potential clinical implications as PD-L1 is a candidate biomarker for increased benefit from treatment with anti-PD1 or anti-PD-L1 antibodies

    Mechanisms of Epithelial-Mesenchymal Transition of Peritoneal Mesothelial Cells During Peritoneal Dialysis

    Get PDF
    A growing body of evidence indicates that epithelial-mesenchymal transition (EMT) of human peritoneal mesothelial cells (HPMC) may play an important role in the development and progression of peritoneal fibrosis during long-term peritoneal dialysis (PD) leading to failure of peritoneal membrane function. Here, we review our own observations and those of others on the mechanisms of EMT of HPMC and suggest potential therapeutic strategies to prevent EMT and peritoneal fibrosis during long-term PD. We found that high glucose and H2O2 as well as transforming growth factor-β1 (TGF-β1) induced EMT in HPMC and that high glucose-induced EMT was blocked not only by inhibition of TGF-β1 but also by antioxidants or inhibitors of mitogen-activated protein kinases (MAPK). Since MAPKs are downstream target molecules of reactive oxygen species (ROS), these data suggest that high glucose-induced generation of ROS and subsequent MAPK activation mediate high glucose-induced EMT in HPMC. We and others also observed that bone morphogenetic protein-7 (BMP-7) prevented EMT in HPMC. Glucose degradation products (GDP) were shown to play a role in inducing EMT. Involvement of a mammalian target of rapamycin (mTOR) in TGF-β1-induced EMT has also been proposed in cultured HPMC. A better understanding of the precise mechanisms involved in EMT of HPMC may provide new therapeutic strategies for inhibiting peritoneal fibrosis in long-term PD patients
    • …
    corecore