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We investigate a time—domain Galerkin boundary element method for the wave equation
outside a Lipschitz obstacle in an absorbing half—space. A priori estimates are presented
for both closed surfaces and screens, and we discuss the relevant properties of anisotropic
Sobolev spaces and the boundary integral operators between them.
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1. Introduction

Motivated by the sound radiation of tyres on a street, this article provides the analytical
background to analyze a time—domain boundary element method for the direct scattering
problem for the wave equation outside an obstacle in an absorbing half-space.

Let d >2 and Q' C Ri be a bounded Lipschitz domain such that the exterior domain
Q¢ =RI\Q is Lipschitz and connected. The reader may wish to think of Q' as a solid
tyre, either in contact with the street (on Q' N ARY) or elevated above it (3Q' NARY =
). The boundary of Q¢ decomposes into the boundary I = 8Q° N 8Q' of the obstacle and
the boundary I, = 8Q° N BRi of the half—space. In general, " is a Lipschitz manifold with
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boundary, and we emphasize the case d = 3.

We aim to find a weak solution to an acoustic initial boundary problem for the wave
equation in Q°:

2
%—Au: in R* x Q°
ou L e
u(0,x) = E(O'X) =0 inQ (1)
Ou ou i
ﬁ—aﬁ—g on R™ x I
ou ou 4
%—amﬁ_o on R™ x .

Here n denotes the inward unit normal vector to 8Q°¢, g lies in a suitable Sobolev space,
a € L®() and ax € C. We also consider the simpler Dirichlet problem on I', for which
instead of the absorbing boundary condition, u|g+yr is given.

This article reduces the acoustic and Dirichlet boundary problems to time—dependent
integral equations on R* x " and studies a Galerkin time—domain boundary element method
for their approximation. Time—dependent Galerkin boundary element methods for wave
problems were introduced by Bamberger and Ha-Duong [1]. Some relevant works on
the numerical implementation of the resulting marching-in-on-time scheme include the
Ph.D. thesis of Terrasse [2] and [3], with fast methods developed in the engineering literature
[4]. Alternative ansatz functions in time have been explored in [5, 6]. A detailed exposition
of the mathematical background of time—domain integral equations and their discretizations
is available in the lecture notes by Sayas [7].

In the special case of the half-space, our work is motivated by the recent explicit formulas
for the fundamental solutions obtained by Ochmann [8], which include acoustic boundary
conditions on the surface of the street.

Section 2 introduces space—time anisotropic Sobolev spaces of supported resp. extendable
distributions on R™ x I". Their approximation theory and interpolation operators are the
subject of Section 3. Subsequent sections follow the approach of Bamberger and Ha Duong
[1, 9], see also [10], to analyze the coercivity and boundedness properties of time—dependent
layer potentials adapted to the acoustic boundary conditions on . As conclusion, we
deduce a priori error estimates for the Galerkin solutions.

The results in this article provide a basic theoretical background for further theoretical
and computational analysis. Based on the set—up presented here, future work will address
a posteriori error estimates and adaptive procedures [11] as well as numerical studies of
engineering benchmarks [12].

We acknowledge support within the project “LeiStra3” by the German Bundesministerium
flr Wirtschaft und Energie as well as the Bundesanstalt fiir StraBenwesen. H.G. thanks the
Danish Science Foundation (FNU) for partial support through research grant 10-082866.

Notation: To simplify notation, we will write £ < g, if there exists a constant C >0
independent of the arguments of the functions f and g such that f < Cg. We will write
f <¢ g, if C may depend on o.
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2. Space—time anisotropic Sobolev spaces

Space—time anisotropic Sobolev spaces on the boundary I provide a convenient setting
to study the mapping properties of the layer potentials [9, 10]. We define these Sobolev
spaces on a general C¥~! closed, orientable manifold M with boundary, in particular obtain
Sobolev spaces on M =T and on M = Q. The isotropic case is well-known from elliptic
problems, see [13], and [14] when OM # 0.

If M # 0, first extend M to a C*~"', closed, orientable manifold M. For example, if
M =0QNnRY and k =1, we may take M to be union of dQNRY and its image under
reflection at ARY.

On M, the usual Sobolev spaces of supported distributions may now be considered for
reR: _ .

H' (M) ={u€ H (M) :supp uC M} .
H"(M) is defined as the quotient space H'(M)/H (M \ M).
To define a family of Sobolev norms, introduce a partition of unity subordinate to the covering
of M by open sets B;. For a partition of unity a; and diffeomorphisms ¢; mapping each B;
into the unit cube Q C R”, a family of equivalent Sobolev norms is induced from R":

1

2

o] 0 55 = (Z [l + 1Py 17 (o) 0 ) <s>|2de)

Here w € C\ {0} and F denotes the Fourier transform. This norm on H'(M) induces a
norm on H'(M) as ||ullrwm = inf, g onan U+ VI, 57

The weighted norm on H' (M) is defined as ||u||rwrcs = ||exul] where e} extends

r,w,/\?’
the distribution u by 0 from M to M. It is stronger than ||u||,w.m whenever r € 1 + Z.

For |r| < k the thus defined Sobolev spaces are independent of the choice of a; and ;.

Using these norms, the trace operator from H!(Q) to H%(F) is continuous in the
w—dependent norms. As shown in [9], for o > 0 its operator norm is uniformly bounded in
the half-plane {w € C: Im w > ¢} by a function of o alone. It admits a right inverse from

H%(F) and ﬁ%(r) to H'(Q) whose norm is similarly bounded in terms of o.
Let E be a Hilbert space. We define

LT (0. E)={f € D\(E); e "f € S,(E)} .

where D), (E) resp. S, (E) denote the sets of distributions resp. tempered distributions on R
with values in E and support in [0,00). As LT (0, E) C LT (o', E) if 0 < o', we may define
o(f)=inf{loc: f € LT(o E)}.

The set of Laplace transformable distributions with values in E is denoted by

LT(E)= ULT(0.E) .
For f € LT(E), its Fourier-Laplace transform f(w) = Ff(w) is defined in the complex half-
plane {w € C:Im w > o(f)}.

We recall the well-known Parseval identity in this setting:

Lemma 2.1 Forf,ge L}, (R, E)YNLT(E) and o > max(o(f),o(g)) there holds

1 A ~
L[ (). gw))edw = / e (F(2), g(t))edt .
27 JRrtio R
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Space—time anisotropic Sobolev spaces on M are now defined as follows:

Definition 2.2 For s, r € R define

Hy(R*, H'(M)) ={u € LT(H'(M)) : ||ullsrm < oo}
HE(RY, H' (M) ={u € LT(H (M) : ||ulls.rrme < 00},

where

+oo+io ) 2 %
||u||s.,.M=(/ 2 113()Ian dw) .

oo+io

+oo+io ) ) 2
el ne = ( [ o 10 B dw) |

oo+io

As above, the spaces are invariantly defined whenever |r| < k.

3. Discretisation

For simplicity of notation, in this section we restrict ourselves to the two— and three—
dimensional cases, d =2 or 3. If T is not polygonal we approximate it by a piecewise
polygonal curve resp. surface and write [ again for the approximation. For simplicity, when
d = 3 we will use here a surface composed of N triangular facets [; such that [ = U,Nzll',-.
When d = 2, we assume I = U, I is composed of line segments ;. In each case, the
elements [ are closed with int(I';) # @, and for distinct I;, [; C T the intersection
int(F,—) n int(['j) =dJ.

For the time discretisation we consider a uniform decomposition of the time interval [0, co)
into subintervals /, = [ty—1, t,) with time step |/,| = At, such that t, = nAt (n=0,1,...).
We choose a basis @f, ---, ¢}, of the space V}} of piecewise polynomial functions of degree
p in space (continuous and vanishing at 8" if p > 1) and a basis g9, - -, V7 of the space
V. of piecewise polynomial functions of degree of ¢ in time (continuous and vanishing at
t=0if g>1).

Let 7s = {T1, -+, Tn. } be the spatial mesh for I and 77 = [0, t1), [t1., t2), - - - . [tn,—1, T) the
time mesh for a finite subinterval [0, T).

We consider the tensor product of the approximation spaces in space and time, V}” and V},,
associated to the space—time mesh Tst = 7s X Tr, and we write

Vlfft =VPeVy.
In this section we discuss the projection operators onto V”), and their approximation

properties. We recall the well-known results for V/” and V,J,, which we are going to need:

Lemma 3.1 Let a; the orthogonal projection from L?(R,) to V., and m < q. Then for
se[-3.3] )
[|f — Maefllosry < CrAtTt “Iflog+1Rs -

Lemma 3.2 Let [, the orthogonal projection from L%(I") to VP and m < p. Then for

s € [-1, 1] we have in the norms of H*(T') resp. H*(T"):

||f - /7/7f||s.r S Chm+1_s|f|m+1.r
I — Mafllsre < CA™ | flmasr

holds for all £ € H™(M)NH*(1).
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The second estimate for oI # (@ follows by extending /T,f € V) by zero outside I which allows

to estimate a H*Z norm on the left hand side by standard Sobolev norms (see [14]).
Combining T, and [1a; one obtains as in Proposition 3.54 of [16]:

Lemma 3.3 Let f € H3(R*, H"(MNH' (M), 0<m<qg+1,0<s<p+1,r<s, I <%
such that Ir > 0. Then ifl,r <0

||f - /7/7 o nAtf”r,l,F S C(ha + (At)ﬁ)”f”s.m,r ,
lf = MMy o Macfllrirs < Clog. (M) (h* 4+ (AP Fls.mr

wherea:min{m—l,m—%},5:min{m+s—(l+r),m+s—%fs/}./f/,r>0,5:
m+s—(+r).

We are also going to require inverse estimates like (3.182) in [16] for s, m < 0
||ph,At||0,0,I' S C(At)s max (hmr Atm)th,AtHs,m,I'

for pnar in the approximation spaces V,7,, namely

1 .
llenaelly—1r. S EIIPh.ArHo__%_r,* (in the proof of the Theorem 6.1)
1 .
[|on.acllior S EHPh,ArHo,o,r (in the proof of the Theorem 6.2)

1
DPh.A 1 - S ———————||phatlloor in the proof of the Theorem 6.2).
|| h t||012_|’ mln{x/E,ﬁ}” h t||00 ( )
The above inverse inequalities hold due to the standard estimates for regular finite element
functions in the usual Sobolev spaces H*(I") [17] on one hand, and on the other hand the
weight function e™?* does not affect these inequalities (see [1, Lemma 2] ).

4. Frequency—domain integral operators in the absorbing
half-space

We follow the approach by Bamberger and Ha-Duong [1] and first analyze an associated
Helmholtz problem in the frequency domain. The analysis will be translated into results for
the wave equation in the following section.

Let ¢ > 0. For a fixed frequency w with Im w > o we consider the exterior Helmholtz
problem associated to the wave equation (1) for u® € H*(Q®):

(A+w)ue(x) =0 inQ°
% taiwu=Ff onT (2)
%e-f-ocooiwuezo on e

plus a Sommerfeld radiation condition at infinity. The radiation condition holds automatically
since for Im w > o the solution decays like e ™ and hence the solution belongs to H*(Q°)
and not only Hi.(Q°).

We also need an auxiliary interior problem for a function u' € H*(Q'):

(A4 w?)u'(x) =0 inQ

66—‘,’7/ —aiwu'=§ onTl (3)
W} aoiwt' =0 on T =0R{ \ M .
Math. Meth. Appl. Sci. 0000, 00 1-19 Copyright © 0000 John Wiley & Sons, Ltd.
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The right-hand sides f, § belong to H_%(I’).
In the appendix we prove a uniqueness result:

Theorem 4.1 The problems (2)-(3) admit at most one solution for Re a > 0 and Re atoo > 0.

The next step is to explicitly construct and represent the solution of the Helmholtz equation
in Q¢ and Q' by means of layer potentials using the representation formula.

As derived by Ochmann [18], for d = 3 a fundamental solution to the half-space problem
is given by:

iw|x—y| iw|x—y'| —(x3+y3) ikr(m)
e ~Bm ©

Gu(x.y) =

€ —Boo(X3+y: )/
2B € 33 e ——dn ,
anlx—y] T amx =y T 2P . arr(m) "

where r(n) = /(x1 —y1)2+ (2 — y2)2 + 1% and B = iWaw. For y = (y1,y2,y3) €RY, '
is given by y' = ()1, y2, —y3). In any dimension, G, allows to define the potential operators
for the absorbing half-space as

oG,
an, (x.y) oly)ds,.

&mm=[@uymuw@,mmm=[

Using G, the solution u of the Helmholtz problems admits an integral representation
formula over ', not just U Mg U .

Theorem 4.2 Any solution u € H*(Q") U H*(Q°) of (2)-(3) satisfying the acoustic boundary
conditions on [, U T, admits a representation

u=Sup—Dup in QUQS,
where

o aue

:8n_8n onl .

o=u —u® and p
The proof of the representation formula is standard if T is replaced by U o U in the
definition of S, and D,. The contribution from integrals over o, and [;,, however, vanishes

since G, satisfies the acoustic boundary conditions.

Taking boundary values of S, and D,,, we obtain integral operators on I,
) e]
Vup(x) =2 | Gu(x,y) ply)dsy , Koo (x) =2 | 5-Gu(x.y) ¢(y) dsy .
r r X
K (x)—z/ic;(x ) p(y)ds, . W, (x)—z/ie(x ) o(y) ds
wpP = ranyw Y) Py T wP = ranxanyw y) oy 7

Here and in the following, the integrals are interpreted as distributional pairings, equivalently
as principal values. As in the full space, the operators relate the traces of u with ¢ and p:

20 = Vop = (1 + Ku)o 20 =V,p + (I — K)o (4)
ou® _ ! au’ _ ’
2 an (=1 + Ku)p —Wuop, 2 B (I + Ku)p—Wyuop.

Adding and subtracting the boundary conditions (2)-(3) on I', we have

%”:—F%—‘,’;—aiw.(p: +~§=
p—aiw(u®+u) = f

Copyright © 0000 John Wiley & Sons, Ltd.  Math. Meth. Appl. Sci. 0000, 00 1-19
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Then using the equation (4) of the trace u we find the following system of integral equations:

KLup — Wy — iwap = F
{ (5)

p— iwa(Vyp — Kup) =G.

ic‘], we obtain the weak

If ¢ # 0 multiplying the first equation by —iw and the second by
formulation after an integration by parts: Find ® = (¢, p) such that

2, (®, V) = 1,(V)  forall U = (¢, q). (6)
Here,
au(®, V) = |w|2/roc<pd_1dsx+/répc7dsx+iw/rKi,pd_/dsx
—iw/ermﬁdsx—iw/rprc‘ydsx+iw/er<pc7dsx

and (V) = i@ [ FYdsc+ [; LGgds,. For a =0, (5) reduces to W,p = K,G — F. For
simplicity, we assume a~! to exist. Other cases have to be treated differently.

Theorem 4.3 (Coercivity) _
Assume that Re o > 0, Re ay > 0. Then the following inequality holds for all U = (¢, p) €

A2(T) x L2(M):
Re au(0.0) 2o l(Re &) plgur +1lelli ,, . + llw(Re @) 0| [F.r -

Proof: Taking the real part of the bilinear form a, and using (4), we calculate

Re(aw (U, 0)) = Re/(K{Up — W — iwap)(—iwg) + pP— /wa(V;p — Kuo) dsy
r

au'  du® . ; eNTim T
_Re/r[an + 5, —iwa(u' — u®)]iw(u' — ue) dsg

1,00 8ge,,8u  dut P e
+Re\/ra(a—§)(an — an —Iwa(u +u ))dSX

. du' - _ou° _
= 0, - l— e
Re/rlw(Qanu 28nu)dsx

1 Ayl aue )
+/—|—U—L2d5x+|w|2/a|u'—ue|2 ds, .
r , r —

=lpl?

ou® _ ou® _ ou® _ ou® _
— e J—— e _ e e
/rc?nu dsx /ranu dsx /rw anu ds)ﬁ—/rjo 8nu dsx,
integration by parts on Q¢ leads to:

e e

_/Bu u_edsxz/ AueJe+VueVuedx+/ ou 0e dsy
r On Qe Jr.. Ox3
ou® _

:/ |vue)? — w?|u®? dx+/ U Fe ds,
Qe r 6X3

.
=/ |Vue|2—w2|ue|2dx—/ icow|u®P dss -
Qe Mo

Adding 0,

Math. Meth. Appl. Sci. 0000, 00 1-19 Copyright © 0000 John Wiley & Sons, Ltd.
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Therefore,

. ou _ . . L
—ReQ/GJ/ Gli) ue dsy = Re(2/ i@|vu®)? — i@w?|u®]? dx — 2/ (i@)icoow|u®|® dsy)
r Qe

oo

= Re(2/ i@|vue)? — iwlw||u? dx+2/ Qoo|w]?| U dsy)
Qe

Mo

220/ V0P + |wl2lu] dx + 2(Re aoo)/ w2 |u[2 ds
Qe Mo

Similarly,

_rou- T |
Re2/w/ V5 s = Re(Q/ /(D|Vu'|2—/ww2|u'|2dx+2/ Wl dsy)
r Qi r

o0

220/ [Vu')? + |w|?|u']? dx + 2(Re aw)/ lw|?|u'| dsx .
Qi e

We conclude

~ o~ _fou - ouf_ 1, 9 2/ 2
Re a,(U,U) =Re?2 I — ——u®) dsk — dsx
e au( ) e/w/r(anu 8nu)s+/ra|p|+|w| I_oz|<p| 5
1
220/ [Vul> + |w]?|u)? d><—|—/Re(—)|p|2 dsx—|—|w|2/Re(oz)|<p|2 dsx
QiuQe r a r

+2/ Re(aoo)|w|2|ue|2d5x+2/ Re(co)wl| ' dss
- .

S} )

1
> 20/ [Vul® + |w|*|u)® dx + / Re(=)|pl? dsc + |w]? / Re(a)|op|” dsx .
QiuQe r a r
Using the trace theorem in Q' and Q°, ||‘P||%,w,r,* <o ||u||1.w.q. we obtain the assertion:
Re au(0.0) 2o l(Re &) plgur +1lelli , . + llw(Re @) %0|[F.r -

Remark 4.4 Assume Re a~ > 0. Then a similar coercivity estimate holds for the single layer
potential V,,:
(7

5w, "

Re(iwVup, ) > Ca||§0||2_;

Boundedness of the integral operators is also shown by going into Q€ U €'. We postpone the
proof to the appendix.

Theorem 4.5 (Continuity)
Assuine1 that Re o qu. The integral operators satisfy the following mapping properties for
peH2(I") and o € H2(T):

IVoblly o So @llIPIs s (®)
Watol |_s o So lwlllell o ©)
10 = Kl o r So @lll@lls r.0. (10)
10 = Kol So llllpll g o (11)

The theorem translates into the boundedness of the considered bilinear form.

Theorem 4.6 Assume that Re as > 0 and o, L € L>(T'). The bilinear form a., is continuous

on (ﬁ%(r) x LQ(F)> x (ﬁ%(r) x LQ(F)).

E Copyright © 0000 John Wiley & Sons, Ltd.  Math. Meth. Appl. Sci. 0000, 00 1-19
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Again, we refer to the appendix for a proof.

With these results we can now state the precise weak formulation of the boundary

integral equation (6): Find ® = (¢, p) € ﬁ%(l’) x L*(T") such that for all W = (4,q) €
H () x L2(T):
aw(®, ) = 1,(D).

Using the coercivity estimate in Theorem 4.3, we conclude the following estimate on the
solution:

lpllowr +l@lly . + llwellowr Se min{llwFll_y - IFllowr} +11Glowr - (12)

Similar resNuItls are obtained for the weaka?rmulation of the Dirichlet problem, which reads:
Find ¢ € H™2(I") such that for all p € H™2(I"):

(Vud, ) = (f. ).
When Re a > 0, from the coercivity (7) one obtains the estimate

19113 wr0 So @Il o (13)

on the solution.

5. Time—domain boundary integral equations for an absorbing
half-space

We consider the wave equation in Ri with acoustic boundary condition
u_ ou
on <ot

In R2 Ochmann determines the Green's function to be [8]

6(t—s—r(3)) , 6(t—s—r(-y3))

4mr(ys) 4mr(—ys)

=0 on GRﬂlr.

G(t—s,x,y)=

+¥ (14)

with
—0 8 H(t = s — r(=y2))

21 Ot \/(t —s+aw(xz +y3))2 + (% — 1)R?

Here H denotes the Heaviside function, R? = (x1 — y1)? + (x2 — y2)? and r(xy3)? =
R? + (x3 Fy3)®. The second and third terms on the right-hand side of G represent the
field reflected by the plane . After a Fourier transform in t, one recovers from G the
frequency—domain Green's function G, from Section 4.

As for the Helmholtz problem the solution u of the direct scattering problem (1) and
its associated interior problem admits an integral representation formula over ', not just
MUl UTL. A similar representation formula in time—domain has been obtained by Becache
[19] for exterior domains in R.

Theorem 5.1 Let u € L*(R*, H/(Q'UQ®)) N Hy(RY, L*(Q' UQ®)) be the solution of (1)
for a Lipschitz boundary . Then it holds in the sense of distributions (x € QU Q', t € R*):

u(t,x) = / %(t — T, x,y)u(T, y)dTds,
Rt any

—/ G(t—T,x,y)ﬂ(T,y)desy ,
R+ xT ony

where G is a fundamental solution in the half-space which satisfies the acoustic boundary
conditions.

Math. Meth. Appl. Sci. 0000, 00 1-19 Copyright © 0000 John Wiley & Sons, Ltd.
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We introduce the single layer potential in time domain for a half-space with an absorbing
boundary condition as

Sp(t, x) = / G(t —7,x,y)p(T,y)dTds, .
Rt xI

Specifically in 3 dimensions, this is

_ 1 [fplt=Ix=yly) l/pﬁ—v—y%w
SMt@—4W/) =yl T a T =y

e [ H(t =5~ [x — ') Jo(e. )5 s
2m ) Jr 05 Ly/(t =5 + ol +12)? + (0& — DRZ g
The corresponding double layer potential D is:
Do(t, x) = / %(t —7,x,y)o(T,y)dTds, .
R+xr Ony

The function u = Sp — D satisfies the wave equation on RY \ ', and according to the
representation formula

o _ow
P="3n " an

As for the Helmholtz equation we have the following trace identities:

on Rt xT.

p=u—u°,

20 =Vp—(I+ K)o 20 =Vp+ (I - K)o, (15)
ou® , au' _ ,
2an—(—l+K)p—th 28n—(/+K)p—W<p.
The relevant boundary integral operators on [ are:
) oG
Vp(t,x) =2 G(t—T1,x,y)p(T,y)dTds,, K'o(t,x) =2 —(t—7,x,y)o(T,y)dTds,,
R+ xT R+ xr ONx
oG °G
Ko(t,x) =2 —(t—=T7,x,y)o(T,y)dTds,, We(t,x)=2 (t =1, x,y)o(T,y)dTds, .
R+ %I any R+ xI anxany

Because G is the inverse Fourier—Laplace transform F,,G., see [8], these boundary integral
operators are conjugates of their frequency—domain analogues: V = F_,%, oV, o Fr.u, and
analogously for K', K, W.

Substituting formula (15) into the boundary condition on I, we obtain the following system
for the unknown functions ¢ and p

(=1 +K)p—Wep—ad(Vp— (I + K)p) = 2f (16)
(I +K)p—Wo+ad:(Vp+ (I — K)p) =2g.
Adding respectively subtracting the two equations of (16), again leads to
K'p—W % =F
p o+az (17)
p+a(Vorp — Korp) =G.

Pairing these equations with test functions ;% respectively Z, we obtain the following space-
time variational formulation:

/ /[(K’p—th)-l-a@t(p] Bt dsx datz/ /Fatwdsx dot
0 r 0 r

/ /[B-I-(V@tp—Kat(p)} quxdat:/ S9 s, dyt .
o Jrto o Jr &
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Here d,t = e 2°'dt, o > 0. The system can be written as
a(d, V) = I(V), (18)

where ® = (@, p), ¥V = (¥, q) and

a(, W) = /O ” /r <a(at<p)(azw) + =0+ K'p(8:) ~ Wep(0et) + V(8ep)a — K(afw)q) ds. dyt
(19)

1) =/ /Fatw ds. dat+/ /@dsx drt (20)
o Jr o Jr @

Remark 5.2 The system of equations (17) and the variational formulation (18) are the
inverse Fourier-Laplace transforms of (5) and (6).

Later we will also require the time—domain mapping properties of the boundary integral
operators in the energy Sobolev spaces.

Theorem 5.3 The following operators are continuous for r € R:

CHEPYRT, HTEH(N) = HO(RY, HE(D))
CHEPYRY, HTE() = HO(RY, H2 (D))
CHIPY(RY, A3 (M) = HL(RY, H3 (1),

W HPYRY, B2 (D) — HL(RY, HT3 () .

X XN <

Proof:  Like the corresponding assertions in the full space [9], the theorem follows
from Theorem 4.5 and Definition 2.2 by conjugation with the Fourier transform:
V =F,L, 0V, o Fisw, and analogously for K', K, W.

Together with Theorem 4.3, the mapping properties imply continuity and coercivity of the
bilinear form a(U, V).

Theorem 5.4 Assume that Re o >0 and a, 2 € L®(). Then the bilinear form of
the variational formulation (18) is continuous on (Hé(RJr, H2 () x HL(R, LQ(F))) X

(H},(R*, H3 () x HL(R*, LQ(I‘))>, ie.

la(U V)| <o (lpllvor + el ) Ulallor + 190l 2 rL) - (21)

If Re oo > 0, it verifies a coercivity estimate: There exists C; > 0 such that:
a(U,U) > Co(llpllo0r + ||<p||§,%,r,* + l18ello,0r) - (22)
Proof: Equations (21) and (22) follow from Theorem 4.3 and Theorem 5.3.
Concerning (22) we note that
co+io

(U, U) = |a(U, U)| = |/ au(0, 0)dw|

—oo+tio

cotio
> |/ Re a0(0, 0)dw|

oco+ia

2 2 2
Z plloor + 1@l 3 - + l8c0llo0r -

Similarly (21) is a consequence of (37) and Cauchy-Schwarz.
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Remark 5.5 Similarly for the Dirichlet problem (see [9, (54)] and Corollary 3.50 in [16] for
the full space)

blo.0) = [ [ V@t ele x)dodot > Collolly _y . (23)

6. A priori estimates in the absorbing half—-space

In the following, we will restrict ourselves to a polyhedral surface ' (d = 3) resp. a polygonal
curve (d =2), which satisfies the assumptions from Section 3. The error incurred by
approximating a general smooth surface or curve by a polyhedral one has been studied by
Nedelec [20], and by Bamberger and Ha Duong in the context of the wave equation [1].

6.1. Dirichlet problem

We now use the approximation results of Section 3 to discuss the convergence of Galerkin
approximations to the Dirichlet problem. As in frequency domain, the mapping properties of
the integral operators allow us to state the precise weak formulation of the time—dependent

boundary integral equation V¢ = f: Find ¢ € H:(R*, H~2(T")) such that
b(é.¥) = (Bef.¥) V€ HYRY, H3()), (24)
where
bow) = [ [(vastt (e s dt
(0:f, W) = /000 /r(atf(t,x))w(t,x)dsx dst.
Similar to the estimate (13) we obtain
M, _3. e So 11Fllgn s r (25)

for any r € R, provided that Re as > 0. In particular, a solution ¢ € HX(R™, H—%(r)) only

exists provided f € H2(R™, Hz (). Coercivity assures that the solution is unique in this case.
The Galerkin formulation of (24) reads: Find ¢nar € Vi, such that

b(dnat, Wnar) = {(BeF)nat, Ynat) Vhat € Viia, - (26)

For the solutions of the continuous and discrete problems we obtain the following a priori
error estimate:

Theorem 6.1 Assume that Re as > 0. For the solutions ¢ € HE(R™T, ﬁ—%(r)) of (24) and
$nar € Vix, of (26) there holds:

”Cb - ¢I7,At||oy,%!|—!* S ||(8tf)h,At - 8tf||0!%1r
. 1 1
+ JPL {(1 + 1Mo = Ynacllo g . + 77100 — 3r¢h,At||o.7%,r,*} :
If in addition ¢ € H3(R*, H™(T')), then
||¢ - ¢I7,At||o_7%_r,* S ||(8tf)h,At - aff”o.%.r

1 1
g B1 (5] B2
+ ((h + AP (1+ =) + (A% + At )M> [1l]s.mr
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where
. 1 m . 1 m+s
a1—mln{m+§,m—m},ﬁl—mln{m+s+§,m+s+ 5 1.
m 1 m+s—1

. 1 .
a2:m|n{m+§,m 1)},62:m|n{m+s—§,m+s—1+ }.

~2(m+4s— 2m
and m>-%s>0.

Proof: We apply the coercivity from Remark 5.5 to ¢nar — Ynat € H;(R+,ﬁ_%(l’)),
Yhae € Vi

lnae — 1/J/7.At||§_7%_r_* S b(bnar — &, dnar — Ynae) + b(d — Ynae, drar — Ynar) -

Continuity of the duality pairing is used to estimate the first term:

b(dnat — @ dnae — Yuae) = / /((atf)h,At — Ocf)(dnae — Ynae) dsx dot
o Jr
< (Bef)nae — atf||0_%_r||¢h,m - 1/J/7,At||0_7%.r.* .
The mapping properties of V from Theorem 5.3 bound the second term as follows:

b(¢ = Ynae, dnae = Ynae) <VO(d = bnac)ll_y 1 rliénae = Pnaell 1 r.
SN = naclly _yr.lénae = Pnaelly 1 r. -

The inverse inequality in the time variable leads to

1
b(¢ — Ynar, dnar — Puar) S EHd’ - 1!1/1,Ar||1_,%_r_*||¢h,m - 1///7.At||0_,%_r_* .

so that we conclude:
l¢n.ae = Phnello 1.ru S N(BeF)nae = Befllg 1 r + $||¢ —Ynaelly 1.
Using the triangle inequality, one shows that
¢ = bnacllo 1. =16 = Ynacllo 1 r. + [8nae = Dnaello 1 r.
S @ nae =l + J0f {16 = Wnacllo_y o+ 7516 nadll 3 .}
S N@eF)nae = Befllo 1

) 1 1
+ ngt{(l + E)Hfb - ’Ll)h,AtHo_,%,r,* + E”atd) - 3r"~l)h,At||o,,%_r_*} -

The second assertion follows from the approximation properties stated in Lemma 3.3.

6.2. Acoustic boundary problem

Next, we consider the variational formulation (18) of the acoustic boundary problem:
Find & = (g, p) € HERY, H2(N) x HXR*, L2()) such that for all W= (¢, q)€
Hy(RY, H2 (1) x HE(R, L2(D)):

a(e,v) = (V). (27)

We obtain an a priori estimate analogous to (12) in the frequency domain. If Re as, Re a >
0and a, £ € L>(I), then for all

lellror +1lell, 1 r o + l@llrsror So min{lIFll .y —g r IFllror} +11Gllror - (28)
Math. Meth. Appl. Sci. 0000, 00 1-19 Copyright © 0000 John Wiley & Sons, Ltd.
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A solution in HE(R*, A2 (I')) x HE(R*, L2(I")) therefore exists provided G € H:(R*, H°(I))
and F € H2(RY, H™2(T)) or F € HL(R™, H°(I)). B

The Galerkin discretisation of (27) reads: Find ®5ac = (pnar, @nar) € Vi7y, x Viy, such that
for all Wy ar = (gnac, Whar) € V,fft X VPg:

- o0 o Gp h
a(Phae, Vnae) = [(What) = / / FiacBeWh ar dsy dyt + / / %""“dsx dot . (29)
0 r 0 r

We now derive an estimate for the error of the above Galerkin approximation to (18) in
the norm |[||.|||« defined by:

1

2
ol = (I1olBor + el s . +118llFor) " Yo = (p,0).

Theorem 6.2 Assume that Re ax,Re a >0 and a, é € L>=(T). For the solutions ® =
(p.®) € Hy(RY, ﬁ%(r)) x Hy(R*, L%(T)) of (18) and ®nar = (pnac, Pnat) € V,f’ft x VP,
of (29) there holds:

[Ilp = Phae, © — ©naelll«
S Fhae — Flloor + [|Ghat — Glloor

o (g ) it (1o = anarllor + 10 = wnadl 1)
— == . — Gnatllior — Ynaelly Lr
At \/E (qh,At-¢h,At)evhp,gtxvh[?ft v

If in addition @ € HF(RT, H™(T)), p € HZ (RY, H™(T)), then we have

I[P = phae. @ — @naclll«
S Fnae = Flloor + 11Ghar — Glloor

1 1
max (g7 e ) (4 BN ol + (5 + ) )
where
Q= m . Br=m+s—1,
_ 1 3ms B 3
ag—mln{mg—2,m2—2(m2+52)}, Bo=mp + s 5

Proof: We write W = (g, %) and start with the coercivity (22) applied to ®par — Vpae €
HL(R*, H™3 () and Wpae € V23 x VPI:

[[|®Phat — \Uh.At|||§ S a(Pnar — Vihae, oot — Viar)
= a(Ppar— P, Ppar — Vhar) + a(D — Vpae, Dnar — Viae) .

With the help of (18), (19) and (20), the first term leads to:
a(Puat — P, Prar — Vpar) = / /(Fh.At — F)(0t@nat — Ornae) dsx dot
o Jr

e GhAt G
_— = — N, - n d X dU't
+/O /r( o a)(pl.At Gnat) ds

S Fnae = Flloor||0conar — O:¥naclloor
+|Gnat — Glloor||pnar — anaclloor
< (1Fnae — Flloor + 11Ghat — Glloo,r)
(I10cwnne — Be¥naclloor + ||pnac — anaclloor)
< (IFnar = Flloor + 11Ghac — Glloo.r) [||®nar — Whae||]« .
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Due to the continuity (21) we can estimate the second term by

[a(P = Vhar, Prar — Vaar)| S <||P = Ghaellior + o - wh.AtHl%_ry*)
: (||<P/7,At = Ynaelly 1.+ [Pnae = QIw,AtHl,O,F) . (30)
Taking into account the inverse estimate from Section 3, we have
llonae = bnaelly 1. S llonar — Ynatllo 1 rv + |18e@n.ar — Octhnnello 1 r .
S llonae = Pnaello s r. + (h™% + At 3)||conac — Betnaclloor (31)

and in time

1
[|phae — Gnaellror < 7||Ph.m — gnatlloor - (32)
Substituting (31) and (32) into (30) results in
[a(® — Wpae, Prar — Vane)l S (1P — gnaellor + |l — 1/J/7.At||1_%_|—_*)

1 1
: (||<Ph.m = Ynatllo s rv + (ﬁ + ﬁ)”aﬂph-m = Oc¥naclloor
1Pt — dnl
At Pn,at — Gqh,atllo.0,0

1 1
< max (* *) (||D — gnaellror + |lo — 1/J/7,Az||1,%1r)

AMNPrae — WV aellls

Altogether, we conclude

[|® = Pratllls SFnat — Flloor + [|Grat — Glloor (33)

1 1
+ max NS (||P—CIh,Ar||1,o,r+||(P—¢/7,At||1_%,r).

Using the interpolation operator from Lemma 3.3, we obtain the powers of h and At stated
in the theorem.

7. Appendix

Proof of Theorem 4.1: We show that interior (3) and exterior Helmholtz problems (2) with
homogeneous boundary conditions f = § = 0 admit at most one solution, v’ = u¢ = 0. To
do so we multiply the Helmholtz equation (3), (2) in Q¢ and Q' with i@ and integrate over
Q° U Q. We obtain

o 2 U
/ Au-iwi+wu-iwiddx=0.
QeuQi

Applying Green’s first theorem to u€ and u', we obtain

, : _ou® ou' )
/ —i@|vul® + iwlw|*|ul? dx—//w(iﬁe— 4 E')dsx—/ w2 Gds,=0.
QeuQi r on on rour,  on

Here, we have neglected a contribution from a large half—sphere which tends to zero as the
radius of the half—sphere goes to infinity.

Math. Meth. Appl. Sci. 0000, 00 1-19 Copyright © 0000 John Wiley & Sons, Ltd.
Prepared using mmaauth.cls



Mathematical

Methods in the

Applied Sciences H. Gimperlein, Z. Nezhi, E. P. Stephan
|

We take the real part of this equality and use the boundary conditions:

ou® au ou
2l vul? ’[uf® dx = Re /—" ——i°— ——0')ds —/ jw—— T ds
m w/QEUQI| ul® + |w|®ul® dx ( g iw( an an ') dsx o Lo )
= Re(/ —i@(—aiwu®d® — aiwu'T) ds, — iw/ —Qeoolwul dsy)
r MUl

= —(Re @) / WP |u + [wP)d' dse — (Re am)/ w2|ul? dss
r r'ocul"x

Since Im w > 0, the conditions Re a > 0 and Re aoo > 0 ensure that u =0 in H*(Q°U Q).
The uniqueness of the solution follows.

Proof of Theorem 4.5: First we prove (8).
Let be pin Hfé(r) and let v = Syp. Then we saw that v verifies:

(A+wv(x) =0 inQUQ

v ove __ H
an ~om =P inl

vieve=0 inTl.

Applying Green’s Theorem in Q' resp. Q° we obtain

._0 i — ._0 i — . i~ . i T
—/ i@ i dsy +//w Vi ds, = / —iw|w|*v'vi dx +/ i@vv'vvidx (34)
e 16) r on Qi i

X3

and

._Ov _ _0ve _ . 2 e e -
— iW=—vdsy— [ i@ vedsy = —iw|w| vve dx + i@Vvevvedx. (35)
reur, Oxs r  On e e

Adding the two equations (34) and (35) we get

D oV ave , ,
—/ :w—vvdsx+//w( % )ve dsX:/ —iw|w|’|v|? dx+/ i@|vv|? dx.
reur, 0xs r on on Qeuqi QeuQ

Using the boundary conditions on I and OR3 we obtain

—/ aoo|w|2|v|2dsx+/i<ﬂpv_e d5X=/ —iw|w|2|v|2dx+/ @9l dx.
Moo UM r QeuQ! QeuQ!

We take the real part of this equation:

= [ Re(am)lulIv]* dss + Re ( [ dsx) = 0 (IIV e + V1B )
rxur’x r

It follows from Re(aw) > 0 and from the trace theorem (Lemma 1.4) that

Re ([@oi ds.) 2 @ (V16 o + 1141 r)

Therefore [wll1p1]_3 1Vl 5w 2 2011VEIR g o [@llPI]- g e 2 201111y g As VI =
VP we obtain
|w|
Vel e < 51PN g
We now consider the estimate (9). Let ¢ in ﬁ%(l’) and let v = =D, . Then we have seen

that v verifies: _
(A+w?)v(x) =0 inQUQE

ov' ove __ .
an T on =0 inl

vVi—ve=¢p inT.
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Moreover, ‘%”,flr = —-Wyo.
Adding (34) and (35), we obtain

_Ov _ _ove - . .
—/ 0 ——V —|—//w (vi—ve) :/ —iw|w]?|v]? +/ i@|vv|*.
Feurh,  OXs r On QeuQ QeuQ

Using the boundary condition on " and s U I, leads to the following equality:

_ove _ . _
—/ Qoo|w]?|v]? dsx+//w—<pds)(:/ —iw|w)?|v]? dX—|—/ i@|vv|? dx.
MUl r on Qeue Qe

Its real part is given by

._ov® e i
~Reaw) [ WPl s+ Re ( [@50ds ) =o (Il IRuae + VIR -
T UM r on

As Re as > 0 and using Cauchy-Schwarz, we conclude
1 ove
2
||Ve||1.m.§2e < WWHVPH%wr*”ﬁHf%wr (36)

. . e ) .
[t remains to estimate %. From Green’s theorem in Q¢ we see that

- ov @dsx—/%‘;ﬁdsxz/ —wzved_)dx—k/ vvevey dx,
r e e

[ 8X3

where 9 € H'(Q%) is an extension of ¢ € H2 () with [|¥]1u.0e Ko (1]l 41 .-
From the trace theorem

|/6ave_ds|<—|| e|| || ||
—_ v e e .
- an © dSx 1w,Q d) 1w,Q

we conclude

ov® ove -
5 lser= s 1 [ 5o6dsd < Cllvluas.
e /I8l =1 7

From (36) it follows that

Ve

0
VeIl o = 15| < ClIVAIwoe < Clolllelly

n — w, [

Using similar reasoning, we obtain the estimates (11) and (10).

Proof of Theorem 4.6: Recall that with U = (¢, p) and V = (¢, q)
JU _ 1 . -
a,(U,V) = IwIQ/atmlfdstr/apc"idstr/w/Kprdsx
r r r
—icTJ/Wu,(m/_idsx—iw/vac"]dsx—i—iw/Kw(pc_]dsx.
r r r

We estimate the various terms of the bilinear form a, using Theorem 4.5

/atml_)dsx
g

1
=pgd
’/rapq Sx
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L — w
i [ Kipias.| < EIKLRILy o191l
r g 2 2
P
<oy il
P
< B pllow il .
m 0 2
@ [ Wopids| < 10lIWeely ol .. < Cloll0l r 91l o
w [ Vepds < llVeplly o rllal_ o
r
2
< ClPIlpll_y 14l .
S C|w|2||p||0.w.l'||q||0.w.l'
iw/Kwtpc_]dsx < Nl 1Kol g l14ll_3 .
r

< ClwPllolls o rllall 5 or.
2
< ClwP 1l o Nallowr

Adding the 6 inequalities we get

2(0.7) So (lllplowr + lwllelly or..) (1wlllallowr + il ,r.) - G7)
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