57 research outputs found

    Gene Expression Responses Linked to Reproduction Effect Concentrations (EC10,20,50,90) of Dimethoate, Atrazine and Carbendazim, in Enchytraeus albidus

    Get PDF
    BACKGROUND: Molecular mechanisms of response to pesticides are scarce and information on such responses from soil invertebrates is almost inexistent. Enchytraeus albidus (Oligochaeta) is a standard soil ecotoxicology model species for which effects of many pesticides are known on survival, reproduction and avoidance behaviour. With the recent microarray development additional information can be retrieved on the molecular effects. METHODOLOGY/PRINCIPAL FINDINGS: Experiments were performed to investigate the transcription responses of E. albidus when exposed to three pesticides - dimethoate (insecticide), atrazine (herbicide) and carbendazim (fungicide) - in a range of concentrations that inhibited reproduction by 10%, 20%, 50% and 90% (EC(10), EC(20), EC(50) and EC(90), respectively). The goal of this study was to further identify key biological processes affected by each compound and if dose-related. All three pesticides significantly affected biological processes like translation, regulation of the cell cycle or general response to stress. Intracellular signalling and microtubule-based movement were affected by dimethoate and carbendazim whereas atrazine affected lipid and steroid metabolism (also by dimethoate) or carbohydrate metabolism (also by carbendazim). Response to DNA damage/DNA repair was exclusively affected by carbendazim. CONCLUSIONS: Changes in gene expression were significantly altered after 2 days of exposure in a dose-related manner. The mechanisms of response were comparable with the ones for mammals, suggesting across species conserved modes of action. The present results indicate the potential of using gene expression in risk assessment and the advantage as early markers

    Molecular characterization of beta-tubulin from Phakopsora pachyrhizi, the causal agent of Asian soybean rust

    Get PDF
    β-tubulins are structural components of microtubules and the targets of benzimidazole fungicides used to control many diseases of agricultural importance. Intron polymorphisms in the intron-rich genes of these proteins have been used in phylogeographic investigations of phytopathogenic fungi. In this work, we sequenced 2764 nucleotides of the β-tubulin gene (Pp tubB) in samples of Phakopsora pachyrhizi collected from seven soybean fields in Brazil. Pp tubB contained an open reading frame of 1341 nucleotides, including nine exons and eight introns. Exon length varied from 14 to 880 nucleotides, whereas intron length varied from 76 to 102 nucleotides. The presence of only four polymorphic sites limited the usefulness of Pp tubB for phylogeographic studies in P. pachyrhizi. The gene structures of Pp tubB and orthologous β-tubulin genes of Melampsora lini and Uromyces viciae-fabae were highly conserved. The amino acid substitutions in β-tubulin proteins associated with the onset of benzimidazole resistance in model organisms, especially at His 6 , Glu 198 and Phe 200 , were absent from the predicted sequence of the P. pachyrhizi β-tubulin protein

    Population Genetic-Structure of Phytophthora-Infestans in the Netherlands

    No full text
    Isolates of Phytophthora infestans were collected from six different regions in the Netherlands in September-October 1989 and subsequently characterized. Regions contained one to four sampling sites and yielded 186 isolates. Additionally, 19 isolates from an ongoing metalaxyl-resistance monitoring project were characterized. In total, 205 isolates were characterized in terms of allozymes (glucose phosphate isomerase [Gpi-1] and peptidase [Pep-1]), mating type, and metalaxyl resistance. The analysis revealed 17 different genotypes. Samples from some sites were highly heterogeneous, whereas samples from other sites appeared homogeneous. Three genotypes each were detected in five of the six regions and together accounted for 61% of all isolates. Metalaxyl-resistant isolates accounted for 35% of the total sample and 45% of the samples from commercial fields. Chi-square contingency analysis indicated significant differences in genotype frequencies among subpopulations from different regions of the country, between A1 and A2 individuals, and between potato and tomato isolates. In most locations the frequency of allozyme alleles differed significantly from frequencies expected according to Hardy-Weinberg equilibrium. The results were consistent with asexual reproduction, although the occurrence of a low level of sexual reproduction cannot be excluded

    Distinct nuclear and spindle pole body population of cyclin-cdc2 in fission yeast

    No full text
    Cyclins, as subunits of the protein kinase encoded by the cdc2 gene are major controlling elements of the eukaryotic cell cycle. The fission yeast Schizosaccharomyces pombe has a B-type cyclin, which is a nuclear protein encoded by the cdc13 gene. Here we demonstrate the presence of two spatially distinct cdc13 cyclin populations in the nucleus of S. pombe, one of which is associated with the mitotic spindle poles. Both populations colocalize with the product of the cdc2 gene (p34cdc2). Treatment of cells with the antimicrotubule drug thiabendazole prevents cyclin degradation and blocks the tyrosine dephosphorylation and activation of cdc2. These results suggest a key regulatory role of the cdc2-cyclin complex in the initiation of mitotic spindle formation and also that mitotic microtubule function is required for cdc2 activation
    corecore