221 research outputs found
Antibody–Drug Conjugate that Exhibits Synergistic Cytotoxicity with an Endosome–Disruptive Peptide
Antibody–drug conjugates are an important class of cancer therapeutics. These agents generally bind a specific cell surface receptor, undergo receptor-mediated endocytosis, and enter the endosomal–lysosomal system, where the environment in these organelles facilitates the release of a membrane-permeable cytotoxin. By using a membrane-impermeable cytotoxin, we describe here a method that allows the cytotoxicity of an antibody conjugate to be triggered by co-administration with an endosome-disruptive peptide that exhibits low toxicity. This approach was validated by conjugation of an anionic derivative of the tubulin-binding cytotoxin colchinol methyl ether to lysine residues of the HER2-targeting antibody trastuzumab (Herceptin) via a disulfide. When this antibody binds HER2 on SKBR3 breast cancer cells and undergoes endocytosis, the membrane-impermeable cytotoxin is released, but it becomes trapped in endosomes, resulting in relatively low cytotoxicity (IC50 > 1 μM). However, co-administration with an essentially nontoxic (IC50 > 10 μM) cholesterol-linked endosome-disruptive peptide promotes the release of this small molecule into the cytoplasm, conferring subnanomolar cytotoxic potency (IC50 = 0.11 ± 0.07 nM). Studies of a structurally related fluorophore conjugate revealed that the endosome-disruptive peptide does not substantially enhance cleavage of the disulfide (t1/2 = 8 ± 2 h) within endosomes, suggesting that the mechanism of endosomal escape involves the efflux of some small molecules without facilitating substantial influx of reduced glutathione
FXR1P but not FMRP regulates the levels of mammalian brain-specific microRNA-9 and microRNA-124
Mammalian brain-specific miR-9 and miR-124 have been implicated in several aspects of neuronal development and function. However, it is not known how their expression levels are regulated in vivo. We found that the levels of miR-9 and miR-124 are regulated by FXR1P but not by the loss of FXR2P or FMRP in vivo, a mouse model of fragile X syndrome. Surprisingly, the levels of miR-9 and miR-124 are elevated in fmr1/fxr2 double-knock-out mice, in part reflecting posttranscriptional upregulation of FXR1P. Indeed, FXR1P is required for efficient processing of pre-miR-9 and pre-miR-124 in vitro and forms a complex with Dicer and pre-miRNAs. These findings reveal differential roles of FMRP family proteins in controlling the expression levels of brain-specific miRNAs
Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure
Quantum geometry - the geometry of electron Bloch wavefunctions - is central
to modern condensed matter physics. Due to the quantum nature, quantum geometry
has two parts, the real part quantum metric and the imaginary part Berry
curvature. The studies of Berry curvature have led to countless breakthroughs,
ranging from the quantum Hall effect in 2DEGs to the anomalous Hall effect
(AHE) in ferromagnets. However, in contrast to Berry curvature, the quantum
metric has rarely been explored. Here, we report a new nonlinear Hall effect
induced by quantum metric by interfacing even-layered MnBi2Te4 (a PT-symmetric
antiferromagnet (AFM)) with black phosphorus. This novel nonlinear Hall effect
switches direction upon reversing the AFM spins and exhibits distinct scaling
that suggests a non-dissipative nature. Like the AHE brought Berry curvature
under the spotlight, our results open the door to discovering quantum metric
responses. Moreover, we demonstrate that the AFM can harvest wireless
electromagnetic energy via the new nonlinear Hall effect, therefore enabling
intriguing applications that bridges nonlinear electronics with AFM
spintronics.Comment: 19 pages, 4 figures and a Supplementary Materials with 66 pages, 4
figures and 3 tables. Originally submitted to Science on Oct. 5, 202
Remote Sensing of Environment: Current status of Landsat program, science, and applications
Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat- 1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality.
Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and followup with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loop—justifying and encouraging current and future programmatic support for Landsat
A Global Building Occupant Behavior Database
This paper introduces a database of 34 field-measured building occupant behavior datasets collected from 15 countries and 39 institutions across 10 climatic zones covering various building types in both commercial and residential sectors. This is a comprehensive global database about building occupant behavior. The database includes occupancy patterns (i.e., presence and people count) and occupant behaviors (i.e., interactions with devices, equipment, and technical systems in buildings). Brick schema models were developed to represent sensor and room metadata information. The database is publicly available, and a website was created for the public to access, query, and download specific datasets or the whole database interactively. The database can help to advance the knowledge and understanding of realistic occupancy patterns and human-building interactions with building systems (e.g., light switching, set-point changes on thermostats, fans on/off, etc.) and envelopes (e.g., window opening/closing). With these more realistic inputs of occupants’ schedules and their interactions with buildings and systems, building designers, energy modelers, and consultants can improve the accuracy of building energy simulation and building load forecasting
Using metallic noncontact atomic force microscope tips for imaging insulators and polar molecules: tip characterization and imaging mechanisms
We demonstrate that using metallic tips for noncontact atomic force microscopy (NC-AFM) imaging at relatively large (>0.5 nm) tip-surface separations provides a reliable method for studying molecules on insulating surfaces with chemical resolution and greatly reduces the complexity of interpreting experimental data. The experimental NC-AFM imaging and theoretical simulations were carried out for the NiO(001) surface as well as adsorbed CO and Co-Salen molecules using Cr-coated Si tips. The experimental results and density functional theory calculations confirm that metallic tips possess a permanent electric dipole moment with its positive end oriented toward the sample. By analyzing the experimental data, we could directly determine the dipole moment of the Cr-coated tip. A model representing the metallic tip as a point dipole is described and shown to produce NC-AFM images of individual CO molecules adsorbed onto NiO(001) in good quantitative agreement with experimental results. Finally, we discuss methods for characterizing the structure of metal-coated tips and the application of these tips to imaging dipoles of large adsorbed molecules. © 2014 American Chemical Society
BLOOM: A 176B-Parameter Open-Access Multilingual Language Model
Large language models (LLMs) have been shown to be able to perform new tasks
based on a few demonstrations or natural language instructions. While these
capabilities have led to widespread adoption, most LLMs are developed by
resource-rich organizations and are frequently kept from the public. As a step
towards democratizing this powerful technology, we present BLOOM, a
176B-parameter open-access language model designed and built thanks to a
collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer
language model that was trained on the ROOTS corpus, a dataset comprising
hundreds of sources in 46 natural and 13 programming languages (59 in total).
We find that BLOOM achieves competitive performance on a wide variety of
benchmarks, with stronger results after undergoing multitask prompted
finetuning. To facilitate future research and applications using LLMs, we
publicly release our models and code under the Responsible AI License
Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity.
Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels
- …