6 research outputs found

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Re-evaluating the need for chronic toxicity studies with therapeutic monoclonal antibodies, using a weight of evidence approach

    No full text
    To support registration of monoclonal antibodies (mAbs) for chronic indications, 6-month toxicity studies have historically been conducted. Experience with mAb development has shown a relatively benign and well-understood safety profile for this class, with most toxicity findings anticipated based on pharmacology. We evaluated whether a 6-month toxicity study is optimal to assess the long-term safety of mAbs. Data on First-in-Human (FIH)-enabling and chronic toxicity studies were shared for 142 mAbs submitted by 11 companies. Opportunities to further optimize study designs to reduce animal usage were identified. For 71% of mAbs, no toxicities or no new toxicities were noted in chronic studies compared to FIH-enabling study findings. New toxicities of potential concern for human safety or that changed trial design were identified in 13.5% of cases, with 7% being considered critical and 2% leading to program termination. An iterative, weight-of-evidence model which considers factors that influence the overall risk for a mAb to cause toxicity was developed. This model enables an evidence-based justification, suggesting when 3-month toxicity studies are likely sufficient to support late-stage clinical development and registration for some mAbs
    corecore