103 research outputs found

    Preliminary overview of hardware costs for minicomputer use in computer-assisted instruction

    Get PDF

    Using MGA to shorten the beef breeding season (2002)

    Get PDF
    Modified conventional synchronization systems for beef cows boost fertility and increase the total number of females that can be inseminated.New March 2002 -- Extension website

    CK2b regulates thrombopoiesis and Ca21-Triggered platelet activation in arterial thrombosis

    Get PDF
    © 2017 by The American Society of Hematology. Platelets, anucleated megakaryocyte (MK)-derived cells, play a major role in hemostasis and arterial thrombosis. Although protein kinase casein kinase 2 (CK2) is readily detected in MKs and platelets, the impact of CK2-dependent signaling on MK/platelet (patho-) physiology has remained elusive. The present study explored the impact of the CK2 regulatory b-subunit on platelet biogenesis and activation. MK/platelet-specific genetic deletion of CK2β (ck2β-/-) in mice resulted in a significant macrothrombocytopenia and an increased extramedullar megakaryopoiesis with an enhanced proportion of premature platelets. Although platelet life span was only mildly affected, ck2β-/- MK displayed an abnormal microtubule structure with a drastically increased fragmentation within bone marrow and a significantly reduced proplatelet formation in vivo. In ck2β-/- platelets, tubulin polymerization was disrupted, resulting in an impaired thrombopoiesis and an abrogated inositol 1,4,5-Triphosphate receptor-dependent intracellular calcium (Ca21) release. Presumably due to a blunted increase in the concentration of cytosolic Ca21, activation-dependent increases of a and dense-granule secretion and integrin aIIbb3 activation, and aggregation were abrogated in ck2β-/- platelets. Accordingly, thrombus formation and stabilization under high arterial shear rates were significantly diminished, and thrombotic vascular occlusion in vivo wassignificantly blunted in ck2β-/- mice, accompanied by a slight prolongation of bleeding time. Following transient middle cerebral artery occlusion, ck2b-/- mice displayed significantly reduced cerebral infarct volumes, developed significantly less neurological deficits, and showed significantly better outcomes after ischemic stroke than ck2βfl/fl mice. The present observations reveal CK2b as a novel powerful regulator of thrombopoiesis, Ca2+-dependent platelet activation, and arterial thrombosis in vivo

    Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems

    Get PDF
    Conservation of species and ecosystems is increasingly difficult because anthropogenic impacts are pervasive and accelerating. Under this rapid global change, maximizing conservation success requires a paradigm shift from maintaining ecosystems in idealized past states toward facilitating their adaptive and functional capacities, even as species ebb and flow individually. Developing effective strategies under this new paradigm will require deeper understanding of the long-term dynamics that govern ecosystem persistence and reconciliation of conflicts among approaches to conserving historical versus novel ecosystems. Integrating emerging information from conservation biology, paleobiology, and the Earth sciences is an important step forward on the path to success. Maintaining nature in all its aspects will also entail immediately addressing the overarching threats of growing human population, overconsumption, pollution, and climate change.Peer reviewe

    Actionable Patient Safety Solutions (APSS) #6: Hand-off Communications

    Get PDF
    Hand-off communications, or hand-off processes, involve the transition of care as well as the transfer of patient-specific information by one healthcare professional to another with the purpose of providing a patient with safe, continuous care. A successful hand-off can only be achieved by effective communication

    Neutrophil “plucking” on megakaryocytes drives platelet production and boosts cardiovascular disease

    Get PDF
    Intravascular neutrophils and platelets collaborate in maintaining host integrity, but their interaction can also trigger thrombotic complications. We report here that cooperation between neutrophil and platelet lineages extends to the earliest stages of platelet formation by megakaryocytes in the bone marrow. Using intravital microscopy, we show that neutrophils "plucked" intravascular megakaryocyte extensions, termed proplatelets, to control platelet production. Following CXCR4-CXCL12-dependent migration towards perisinusoidal megakaryocytes, plucking neutrophils actively pulled on proplatelets and triggered myosin light chain and extracellular-signal-regulated kinase activation through reactive oxygen species. By these mechanisms, neutrophils accelerate proplatelet growth and facilitate continuous release of platelets in steady state. Following myocardial infarction, plucking neutrophils drove excessive release of young, reticulated platelets and boosted the risk of recurrent ischemia. Ablation of neutrophil plucking normalized thrombopoiesis and reduced recurrent thrombosis after myocardial infarction and thrombus burden in venous thrombosis. We establish neutrophil plucking as a target to reduce thromboischemic events

    Experimental validation of computerised models of clustering of platelet glycoprotein receptors that signal via tandem SH2 domain proteins

    Get PDF
    The clustering of platelet glycoprotein receptors with cytosolic YxxL and YxxM motifs, including GPVI, CLEC-2 and PEAR1, triggers activation via phosphorylation of the conserved tyrosine residues and recruitment of the tandem SH2 (Src homology 2) domain effector proteins, Syk and PI 3-kinase. We have modelled the clustering of these receptors with monovalent, divalent and tetravalent soluble ligands and with transmembrane ligands based on the law of mass action using ordinary differential equations and agent-based modelling. The models were experimentally evaluated in platelets and transfected cell lines using monovalent and multivalent ligands, including novel nanobody-based divalent and tetravalent ligands, by fluorescence correlation spectroscopy. Ligand valency, receptor number, receptor dimerisation, receptor phosphorylation and a cytosolic tandem SH2 domain protein act in synergy to drive receptor clustering. Threshold concentrations of a CLEC-2-blocking antibody and Syk inhibitor act in synergy to block platelet aggregation. This offers a strategy for countering the effect of avidity of multivalent ligands and in limiting off-target effects
    corecore