795 research outputs found

    Telerobotic Surgery for Right and Sigmoid Colectomy

    Get PDF

    A study of methanol and silicon monoxide production through episodic explosions of grain mantles in the Central Molecular Zone

    Get PDF
    Methanol (CH3_3OH) is found to be abundant and widespread towards the Central Molecular Zone, the inner few hundred parsecs of our Galaxy. Its origin is, however, not fully understood. It was proposed that the high cosmic ray ionisation rate in this region could lead to a more efficient non-thermal desorption of this species formed on grain surfaces, but it would also mean that this species is destroyed in a relatively short timescale. In a first step, we run chemical models with a high cosmic ray ionisation rate and find that this scenario can only reproduce the lowest abundances of methanol derived in this region (∼\sim10−9^{-9}-10−8^{-8}). In a second step, we investigate another scenario based on episodic explosions of grain mantles. We find a good agreement between the predicted abundances of methanol and the observations. We find that the dominant route for the formation of methanol is through hydrogenation of CO on the grains followed by the desorption due to the grain mantle explosion. The cyclic aspect of this model can explain the widespread presence of methanol without requiring any additional mechanism. We also model silicon monoxide (SiO), another species detected in several molecular clouds of the Galactic Centre. An agreement is found with observations for a high depletion of Si (Si/H ∼\sim 10−8^{-8}) with respect to the solar abundance.Comment: Accepted in MNRA

    Investigating the Efficiency of Explosion Chemistry as a Source of Complex Organic Molecules in TMC-1

    Get PDF
    Many species of complex organic molecules (COMs) have been observed in several astrophysical environments but it is not clear how they are produced, particularly in cold, quiescent regions. One process that has been proposed as a means to enhance the chemical complexity of the gas phase in such regions is the explosion of the ice mantles of dust grains. In this process, a build up of chemical energy in the ice is released, sublimating the ices and producing a short lived phase of high density, high temperature gas. The gas-grain chemical code UCLCHEM has been modified to treat these explosions in order to model the observed abundances of COMs towards the TMC-1 region. It is found that, based on our current understanding of the explosion mechanism and chemical pathways, the inclusion of explosions in chemical models is not warranted at this time. Explosions are not shown to improve the model's match to the observed abundances of simple species in TMC-1. Further, neither the inclusion of surface diffusion chemistry, nor explosions, results in the production of COMs with observationally inferred abundances.Comment: Accepted for publication in Ap

    Owens Sawmill: A Family Business Facing a Social Responsibility Dilemma

    Get PDF
    This is a real case involving an SME that produces southern hardwood finished lumber. The family business faces a social responsibility dilemma in terms of displaced workers and limited job opportunities in the surrounding labor market if they purchase a new saw that would modernize production, improve profitability, and eliminate 50 percent of their labor costs. The most logical employment for these workers would be a cutter, loader, or hauler of logs, which have been determined to be some of the most dangerous jobs in the United States. This case requires students to examine the decision-making process of a modest family business in a small, cohesive community and the ramifications of these decisions, as well as issues concerning technology and production improvements, displaced workers, social responsibilities, and the rights and responsibilities of employers and employees

    Champagne Flutes and Brandy Snifters: Modelling Protostellar Outflow-Cloud Chemical Interfaces

    Full text link
    A rich variety of molecular species has now been observed towards hot cores in star forming regions and in the interstellar medium. An increasing body of evidence from millimetre interferometers suggests that many of these form at the interfaces between protostellar outflows and their natal molecular clouds. However, current models have remained unable to explain the origin of the observational bias towards wide-angled "brandy snifter" shaped outflows over narrower "champagne flute" shapes in carbon monoxide imaging. Furthermore, these wide-angled systems exhibit unusually high abundances of the molecular ion HCO+^+. We present results from a chemo-dynamic model of such regions where a rich chemistry arises naturally as a result of turbulent mixing between cold, dense molecular gas and the hot, ionized outflow material. The injecta drives a rich and rapid ion-neutral chemistry in qualitative and quantitative agreement with the observations. The observational bias towards wide-angled outflows is explained naturally by the geometry-dependent ion injection rate causing rapid dissociation of CO in the younger systems.Comment: Accepted to MNRAS. 12 pages, 8 Figure

    Bear Stearns Email from David Rawlings to Alan Schwartz Re Client Calls

    Get PDF

    You Don't See What I See:Individual Differences in the Perception of Meaning from Visual Stimuli

    Get PDF
    Everyone has their own unique version of the visual world and there has been growing interest in understanding the way that personality shapes one's perception. Here, we investigated meaningful visual experiences in relation to the personality dimension of schizotypy. In a novel approach to this issue, a non-clinical sample of subjects (total n = 197) were presented with calibrated images of scenes, cartoons and faces of varying visibility embedded in noise; the spatial properties of the images were constructed to mimic the natural statistics of the environment. In two experiments, subjects were required to indicate what they saw in a large number of unique images, both with and without actual meaningful structure. The first experiment employed an open-ended response paradigm and used a variety of different images in noise; the second experiment only presented a series of faces embedded in noise, and required a forced-choice response from the subjects. The results in all conditions indicated that a high positive schizotypy score was associated with an increased tendency to perceive complex meaning in images comprised purely of random visual noise. Individuals high in positive schizotypy seemed to be employing a looser criterion (response bias) to determine what constituted a 'meaningful' image, while also being significantly less sensitive at the task than those low in positive schizotypy. Our results suggest that differences in perceptual performance for individuals high in positive schizotypy are not related to increased suggestibility or susceptibility to instruction, as had previously been suggested. Instead, the observed reductions in sensitivity along with increased response bias toward seeing something that is not there, indirectly implicated subtle neurophysiological differences associated with the personality dimension of schizotypy, that are theoretically pertinent to the continuum of schizophrenia and hallucination-proneness

    Bear Stearns Email from David Rawlings Re Paulson Partners follow up

    Get PDF

    Chemistry in Evaporating Ices: Unexplored Territory

    Full text link
    We suggest that three-body chemistry may occur in warm high density gas evaporating in transient co\textendash desorption events on interstellar ices. Using a highly idealised computational model we explore the chemical conversion from simple species of the ice to more complex species containing several heavy atoms, as a function of density and of adopted three body rate coefficients. We predict that there is a wide range of densities and rate coefficients in which a significant chemical conversion may occur. We discuss the implications of this idea for the astrochemistry of hot cores.Comment: Accepted in Ap

    Gravitational instabilities in a protosolar-like disc - I. Dynamics and chemistry

    Get PDF
    MGE gratefully acknowledges a studentship from the European Research Council (ERC; project PALs 320620). JDI gratefully acknowledges funding from the European Union FP7-2011 under grant agreement no. 284405. ACB's contribution was supported, in part, by The University of British Columbia and the Canada Research Chairs program. PC and TWH acknowledge the financial support of the European Research Council (ERC; project PALs 320620).To date, most simulations of the chemistry in protoplanetary discs have used 1 + 1D or 2D axisymmetric α-disc models to determine chemical compositions within young systems. This assumption is inappropriate for non-axisymmetric, gravitationally unstable discs, which may be a significant stage in early protoplanetary disc evolution. Using 3D radiative hydrodynamics, we have modelled the physical and chemical evolution of a 0.17 M⊙ self-gravitating disc over a period of 2000 yr. The 0.8 M⊙ central protostar is likely to evolve into a solar-like star, and hence this Class 0 or early Class I young stellar object may be analogous to our early Solar system. Shocks driven by gravitational instabilities enhance the desorption rates, which dominate the changes in gas-phase fractional abundances for most species. We find that at the end of the simulation, a number of species distinctly trace the spiral structure of our relatively low-mass disc, particularly CN. We compare our simulation to that of a more massive disc, and conclude that mass differences between gravitationally unstable discs may not have a strong impact on the chemical composition. We find that over the duration of our simulation, successive shock heating has a permanent effect on the abundances of HNO, CN and NH3, which may have significant implications for both simulations and observations. We also find that HCO+ may be a useful tracer of disc mass. We conclude that gravitational instabilities induced in lower mass discs can significantly, and permanently, affect the chemical evolution, and that observations with high-resolution instruments such as Atacama Large Millimeter/submillimeter Array (ALMA) offer a promising means of characterizing gravitational instabilities in protosolar discs.Publisher PDFPeer reviewe
    • …
    corecore