224 research outputs found
Gigantic mysticete predators roamed the Eocene Southern Ocean
Modern baleen whales (Mysticeti), the largest animals on Earth, arose from small ancestors around 36.4 million years ago (Ma). True gigantism is thought to have arisen late in mysticete history, with species exceeding 10 m unknown prior to 8 Ma. This view is challenged by new fossils from Seymour Island (Isla Marambio), Antarctica, which suggest that enormous whales once roamed the Southern Ocean during the Late Eocene (c. 34 Ma). The new material hints at an unknown species of the archaic mysticete Llanocetus with a total body length of up to 12 m. The latter is comparable to that of extant Omura´s whales (Balaenoptera omurai Wada et al. 2003), and suggests that gigantism has been a re-occurring feature of mysticetes since their very origin. Functional analysis including sharpness and dental wear implies an at least partly raptorial feeding strategy, starkly contrasting with the filtering habit of living whales. The new material markedly expands the size range of archaic mysticetes, and demonstrates that whales achieved considerable disparity shortly after their origin.Fil: Marx, Felix G.. Royal Belgian Institute of Natural Sciences. Directorate Earth and History of Life; Bélgica. Monash University; Australia. Museums Victoria. Geosciences; AustraliaFil: Buono, Mónica Romina. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de GeologÃa y PaleontologÃa; ArgentinaFil: Evans, Alistair R.. Monash University; Australia. Museums Victoria. Geosciences; AustraliaFil: Fordyce, Robert Ewan. University of Otago; Nueva Zelanda. National Museum of Natural History; Estados UnidosFil: Reguero, Marcelo Alfredo. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; ArgentinaFil: Hocking, David P.. Monash University; Australia. Museums Victoria. Geosciences; Australi
Suction feeding preceded filtering in baleen whale evolution
The origin of baleen, the key adaptation of modern whales (Mysticeti), marks a profound yet poorly understood transition in vertebrate evolution, triggering the rise of the largest animals on Earth. Baleen is thought to have appeared in archaic tooth-bearing mysticetes during a transitional phase that combined raptorial feeding with incipient bulk filtering. Here we show that tooth wear in a new Late Oligocene mysticete belonging to the putatively transitional family Aetiocetidae is inconsistent with the presence of baleen, and instead indicative of suction feeding. Our findings suggest that baleen arose much closer to the origin of toothless mysticete whales than previously thought. In addition, they suggest an entirely new evolutionary scenario in which the transition from raptorial to baleen-assisted filter feeding was mediated by suction, thereby avoiding the problem of functional interference between teeth and the baleen rack
Using accelerometers to develop time-energy budgets of wild fur seals from captive surrogates
Background Accurate time-energy budgets summarise an animal’s energy expenditure in a given environment, and are potentially a sensitive indicator of how an animal responds to changing resources. Deriving accurate time-energy budgets requires an estimate of time spent in different activities and of the energetic cost of that activity. Bio-loggers (e.g., accelerometers) may provide a solution for monitoring animals such as fur seals that make long-duration foraging trips. Using low resolution to record behaviour may aid in the transmission of data, negating the need to recover the device. Methods This study used controlled captive experiments and previous energetic research to derive time-energy budgets of juvenile Australian fur seals (Arctocephalus pusillus) equipped with tri-axial accelerometers. First, captive fur seals and sea lions were equipped with accelerometers recording at high (20 Hz) and low (1 Hz) resolutions, and their behaviour recorded. Using this data, machine learning models were trained to recognise four states—foraging, grooming, travelling and resting. Next, the energetic cost of each behaviour, as a function of location (land or water), season and digestive state (pre- or post-prandial) was estimated. Then, diving and movement data were collected from nine wild juvenile fur seals wearing accelerometers recording at high- and low- resolutions. Models developed from captive seals were applied to accelerometry data from wild juvenile Australian fur seals and, finally, their time-energy budgets were reconstructed. Results Behaviour classification models built with low resolution (1 Hz) data correctly classified captive seal behaviours with very high accuracy (up to 90%) and recorded without interruption. Therefore, time-energy budgets of wild fur seals were constructed with these data. The reconstructed time-energy budgets revealed that juvenile fur seals expended the same amount of energy as adults of similar species. No significant differences in daily energy expenditure (DEE) were found across sex or season (winter or summer), but fur seals rested more when their energy expenditure was expected to be higher. Juvenile fur seals used behavioural compensatory techniques to conserve energy during activities that were expected to have high energetic outputs (such as diving). Discussion As low resolution accelerometry (1 Hz) was able to classify behaviour with very high accuracy, future studies may be able to transmit more data at a lower rate, reducing the need for tag recovery. Reconstructed time-energy budgets demonstrated that juvenile fur seals appear to expend the same amount of energy as their adult counterparts. Through pairing estimates of energy expenditure with behaviour this study demonstrates the potential to understand how fur seals expend energy, and where and how behavioural compensations are made to retain constant energy expenditure over a short (dive) and long (season) period
A geometric discretisation scheme applied to the Abelian Chern-Simons theory
We give a detailed general description of a recent geometrical discretisation
scheme and illustrate, by explicit numerical calculation, the scheme's ability
to capture topological features. The scheme is applied to the Abelian
Chern-Simons theory and leads, after a necessary field doubling, to an
expression for the discrete partition function in terms of untwisted
Reidemeister torsion and of various triangulation dependent factors. The
discrete partition function is evaluated computationally for various
triangulations of and of lens spaces. The results confirm that the
discretisation scheme is triangulation independent and coincides with the
continuum partition functionComment: 27 pages, 5 figures, 6 tables. in late
Phase diagram for non-axisymmetric plasma balls
Plasma balls and rings emerge as fluid holographic duals of black holes and
black rings in the hydrodynamic/gravity correspondence for the Scherk-Schwarz
AdS system. Recently, plasma balls spinning above a critical rotation were
found to be unstable against m-lobed perturbations. In the phase diagram of
stationary solutions the threshold of the instability signals a bifurcation to
a new phase of non-axisymmetric configurations. We find explicitly this family
of solutions and represent them in the phase diagram. We discuss the
implications of our results for the gravitational system. Rotating
non-axisymmetric black holes necessarily radiate gravitational waves. We thus
emphasize that it would be important, albeit possibly out of present reach, to
have a better understanding of the hydrodynamic description of gravitational
waves and of the gravitational interaction between two bodies. We also argue
that it might well be that a non-axisymmetric m-lobed instability is also
present in Myers-Perry black holes for rotations below the recently found
ultraspinning instability.Comment: 1+22 pages, 3 figures. v2: minor corrections and improvements,
matches published versio
Infektionsabwehr und lymphatischer Rachenring
Foraging behaviours used by two female Australian fur seals (Arctocephalus pusillus doriferus) were documented during controlled feeding trials. During these trials the seals were presented with prey either free-floating in open water or concealed within a mobile ball or a static box feeding device. When targeting free-floating prey both subjects primarily used raptorial biting in combination with suction, which was used to draw prey to within range of the teeth. When targeting prey concealed within either the mobile or static feeding device, the seals were able to use suction to draw out prey items that could not be reached by biting. Suction was followed by lateral water expulsion, where water drawn into the mouth along with the prey item was purged via the sides of the mouth. Vibrissae were used to explore the surface of the feeding devices, especially when locating the openings in which the prey items had been hidden. The mobile ball device was also manipulated by pushing it with the muzzle to knock out concealed prey, which was not possible when using the static feeding device. To knock prey out of this static device one seal used targeted bubble blowing, where a focused stream of bubbles was blown out of the nose into the openings in the device. Once captured in the jaws, prey items were manipulated and re-oriented using further mouth movements or chews so that they could be swallowed head first. While most items were swallowed whole underwater, some were instead taken to the surface and held in the teeth, while being vigorously shaken to break them into smaller pieces before swallowing. The behavioural flexibility displayed by Australian fur seals likely assists in capturing and consuming the extremely wide range of prey types that are targeted in the wild, during both benthic and epipelagic foraging
Towards hydrogen energy: progress on catalysts for water splitting
This article reviews some of the recent work by fellows and associates of the Australian Research Council Centre of Excellence for Electromaterials Science (ACES) at Monash University and the University of Wollongong, as well as their collaborators, in the field of water oxidation and reduction catalysts. This work is focussed on the production of hydrogen for a hydrogen-based energy technology. Topics include: (1) the role and apparent relevance of the cubane-like structure of the Photosystem II Water Oxidation Complex (PSII-WOC) in non-biological homogeneous and heterogeneous water oxidation catalysts, (2) light-activated conducting polymer catalysts for both water oxidation and reduction, and (3) porphyrin-based light harvesters and catalysts
Effects of Timber Harvest on Amphibian Populations: Understanding Mechanisms from Forest Experiments
Accompanying appendix may be accessed at: http://hdl.handle.net/10355/1365Harvesting timber is a common form of land use that has the potential to cause declines in amphibian populations. It is essential to understand the behavior and fate of individuals and the resulting consequences for vital rates (birth, death, immigration, emigration) under different forest management conditions.We report on experimental studies conducted in three regions of the United States to identify mechanisms of responses by pond-breeding amphibians to timber harvest treatments. Our studies demonstrate that life stages related to oviposition and larval performance in
the aquatic stage are sometimes affected positively by clearcutting, whereas effects on juvenile and adult terrestrial stages are mostly negative
Clawed forelimbs allow northern seals to eat like their ancient ancestors
Funding for this project was provided by a Marie Skłodowska-Curie Global Postdoctoral Fellowship (656010/MYSTICETI) to F.G.M, by Marine Scotland to support the wild observations recorded by R.N.H., by an Australian Research Council Future Fellowship FT130100968 to A.R.E., and by an Australian Research Council Linkage Project LP150100403 to A.R.E. and E.M.G.F.Streamlined flippers are often considered the defining feature of seals and sea lions, whose very name ‘pinniped’ comes from the Latin pinna and pedis, meaning ‘fin-footed’. Yet not all pinniped limbs are alike. Whereas otariids (fur seals and sea lions) possess stiff streamlined forelimb flippers, phocine seals (northern true seals) have retained a webbed yet mobile paw bearing sharp claws. Here, we show that captive and wild phocines routinely use these claws to secure prey during processing, enabling seals to tear large fish by stretching them between their teeth and forelimbs. ‘Hold and tear’ processing relies on the primitive forelimb anatomy displayed by phocines, which is also found in the early fossil pinniped Enaliarctos. Phocine forelimb anatomy and behaviour therefore provide a glimpse into how the earliest seals likely fed, and indicate what behaviours may have assisted pinnipeds along their journey from terrestrial to aquatic feeding.Publisher PDFPeer reviewe
A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms
We describe a genetic variation map for the chicken genome containing 2.8 million single-nucleotide polymorphisms ( SNPs). This map is based on a comparison of the sequences of three domestic chicken breeds ( a broiler, a layer and a Chinese silkie) with that of their wild ancestor, red jungle fowl. Subsequent experiments indicate that at least 90% of the variant sites are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about five SNPs per kilobase for almost every possible comparison between red jungle fowl and domestic lines, between two different domestic lines, and within domestic lines - in contrast to the notion that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated before domestication, and there is little evidence of selective sweeps for adaptive alleles on length scales greater than 100 kilobases
- …