192 research outputs found

    Targeted Deposition of Antibodies on a Multiplex CMOS Microarray and Optimization of a Sensitive Immunoassay Using Electrochemical Detection

    Get PDF
    The CombiMatrix ElectraSense microarray is a highly multiplex, complementary metal oxide semiconductor with 12,544 electrodes that are individually addressable. This platform is commercially available as a custom DNA microarray; and, in this configuration, it has also been used to tether antibodies (Abs) specifically on electrodes using complementary DNA sequences conjugated to the Abs.An empirical method is described for developing and optimizing immunoassays on the CombiMatrix ElectraSense microarray based upon targeted deposition of polypyrrole (Ppy) and capture Ab. This process was automated using instrumentation that can selectively apply a potential or current to individual electrodes and also measure current generated at the electrodes by an enzyme-enhanced electrochemical (ECD) reaction. By designating groups of electrodes on the array for different Ppy deposition conditions, we determined that the sensitivity and specificity of a sandwich immunoassay for staphylococcal enterotoxin B (SEB) is influenced by the application of different voltages or currents and the application time. The sandwich immunoassay used a capture Ab adsorbed to the Ppy and a reporter Ab labeled for fluorescence detection or ECD, and results from these methods of detection were different.Using Ppy deposition conditions for optimum results, the lower limit of detection for SEB using the ECD assay was between 0.003 and 0.01 pg/ml, which represents an order of magnitude improvement over a conventional enzyme-linked immunosorbant assay. In the absence of understanding the variables and complexities that affect assay performance, this highly multiplexed electrode array provided a rapid, high throughput, and empirical approach for developing a sensitive immunoassay

    Nuclear dependence of the transverse single-spin asymmetry in the production of charged hadrons at forward rapidity in polarized p+pp+p, p+p+Al, and p+p+Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Get PDF
    We report on the nuclear dependence of transverse single-spin asymmetries (TSSAs) in the production of positively-charged hadrons in polarized p+pp^{\uparrow}+p, p+p^{\uparrow}+Al and p+p^{\uparrow}+Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV. The measurements have been performed at forward rapidity (1.4<η<2.41.4<\eta<2.4) over the range of 1.8<pT<7.01.8<p_{T}<7.0 GeV/c/c and 0.1<xF<0.20.1<x_{F}<0.2. We observed a positive asymmetry ANA_{N} for positively-charged hadrons in \polpp collisions, and a significantly reduced asymmetry in pp^{\uparrow}+AA collisions. These results reveal a nuclear dependence of charged hadron ANA_N in a regime where perturbative techniques are relevant. These results provide new opportunities to use \polpA collisions as a tool to investigate the rich phenomena behind TSSAs in hadronic collisions and to use TSSA as a new handle in studying small-system collisions.Comment: 303 authors from 66 institutions, 9 pages, 2 figures, 1 table. v1 is version accepted for publication in Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurements of double-helicity asymmetries in inclusive J/ψJ/\psi production in longitudinally polarized p+pp+p collisions at s=510\sqrt{s}=510 GeV

    Full text link
    We report the double helicity asymmetry, ALLJ/ψA_{LL}^{J/\psi}, in inclusive J/ψJ/\psi production at forward rapidity as a function of transverse momentum pTp_T and rapidity y|y|. The data analyzed were taken during s=510\sqrt{s}=510 GeV longitudinally polarized pp++pp collisions at the Relativistic Heavy Ion Collider (RHIC) in the 2013 run using the PHENIX detector. At this collision energy, J/ψJ/\psi particles are predominantly produced through gluon-gluon scatterings, thus ALLJ/ψA_{LL}^{J/\psi} is sensitive to the gluon polarization inside the proton. We measured ALLJ/ψA_{LL}^{J/\psi} by detecting the decay daughter muon pairs μ+μ\mu^+ \mu^- within the PHENIX muon spectrometers in the rapidity range 1.2<y<2.21.2<|y|<2.2. In this kinematic range, we measured the ALLJ/ψA_{LL}^{J/\psi} to be 0.012±0.0100.012 \pm 0.010~(stat)~±\pm~0.0030.003(syst). The ALLJ/ψA_{LL}^{J/\psi} can be expressed to be proportional to the product of the gluon polarization distributions at two distinct ranges of Bjorken xx: one at moderate range x0.05x \approx 0.05 where recent RHIC data of jet and π0\pi^0 double helicity spin asymmetries have shown evidence for significant gluon polarization, and the other one covering the poorly known small-xx region x2×103x \approx 2\times 10^{-3}. Thus our new results could be used to further constrain the gluon polarization for x<0.05x< 0.05.Comment: 335 authors, 10 pages, 4 figures, 3 tables, 2013 data. Version accepted for publication by Phys. Rev. D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Nuclear dependence of the transverse-single-spin asymmetry for forward neutron production in polarized pp++AA collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV

    Get PDF
    During 2015 the Relativistic Heavy Ion Collider (RHIC) provided collisions of transversely polarized protons with Au and Al nuclei for the first time, enabling the exploration of transverse-single-spin asymmetries with heavy nuclei. Large single-spin asymmetries in very forward neutron production have been previously observed in transversely polarized pp++pp collisions at RHIC, and the existing theoretical framework that was successful in describing the single-spin asymmetry in pp++pp collisions predicts only a moderate atomic-mass-number (AA) dependence. In contrast, the asymmetries observed at RHIC in pp++AA collisions showed a surprisingly strong AA dependence in inclusive forward neutron production. The observed asymmetry in pp++Al collisions is much smaller, while the asymmetry in pp++Au collisions is a factor of three larger in absolute value and of opposite sign. The interplay of different neutron production mechanisms is discussed as a possible explanation of the observed AA dependence.Comment: 315 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for publication in Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore